Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal Area Algorithm for Planar Polyline Drawings

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2573))

Included in the following conference series:

Abstract

We present a linear time algorithm based on Schnyder trees that produces planar polyline drawings. These drawings have the optimal area (4(n-1)2/9) and width (⌊2(n-1)/3⌋), and have at most n-2 bends, where n is the number of vertices of the graph. Moreover, at most one bend per edge is needed.

This work has been supported by the TMR Research Network GETGRATS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Batini,, G. di Battista, and R. Tamassia. Automatic graph drawing and readability of diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):61–79, 1988.

    Article  Google Scholar 

  2. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the visualisation of graphs. Prentice Hall, 1999.

    Google Scholar 

  3. G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs. In Theoret. Comput. Sci, volume 61, pages 175–198, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Di Battista, R. Tamassia, and I.G. Tollis. Constrained visibility representations of graphs. In Inform. Process. Lett., volume 41, pages 1–7, 1992.

    Article  MATH  Google Scholar 

  5. N. Bonichon, B. Le Saëc, and M. Mosbah. Orthogonal drawings based on the stratification of planar graphs. Technical Report RR-1246-00, LaBRI, 2000.

    Google Scholar 

  6. N. Bonichon, B. Le Saëc, and M. Mosbah. Wagner’s theorem on realizers. In International Colloquium on Automata, Languages and Programming 2002 (ICALP’02), LNCS, to appear.

    Google Scholar 

  7. C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Drawing planar graphs with circular arcs. In Graph Drawing (Proc. GD’ 99), volume 1731 of Lecture Notes in Computer Science, pages 117–126. Springer-Verlag, 1999.

    Google Scholar 

  8. Yi-Ting Chiang, Ching-Chi Lin, and Hsueh-I Lu. Orderly spanning trees with applications to graph encoding and graph drawing. In Proc. 12th Symp. Discrete Algorithms, pages 506–515. ACM and SIAM, 2001.

    Google Scholar 

  9. N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex drawings of planar graphs. Progress in Graph Theory, pages 153–173, 1984.

    Google Scholar 

  10. Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I Lu. Compact encodings of planar graphs via canonical ordering and multiple parentheses. In Proc. 25th International Colloquium on Automata, Languages, and Programming (ICALP’98), volume 1443, pages 118–129, 1998.

    Google Scholar 

  11. U. Föβmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of Lecture Notes in Computer Science, pages 254–266. Springer-Verlag, 1996.

    Google Scholar 

  12. H. De Fraysseix, J. Pach, and J. Pollack. Small sets supporting fary embeddings of planar graphs. In 20th Annual ACM Symp. on Theory of Computing, pages 426–433, 1988.

    Google Scholar 

  13. H. De Fraysseix, J. Pach, and J. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular resolution. In S. Whitesides, editor, Graph Drawing (Proc. GD’ 98), volume 1547 of Lecture Notes in Computer Science, pages 167–182. Springer-Verlag, 1998.

    Google Scholar 

  15. G. Kant. Hexagonal grid drawings. In In Proc 18th Internat. Workshop Graph-Theoret. Concepts Comput. Sci, 1992.

    Google Scholar 

  16. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4–32, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  17. Gunnar W. Klau and Petra Mutzel. Quasi-orthogonal drawing of planar graphs. Research Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany, May 1998.

    Google Scholar 

  18. M. Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs. In Graph Drawing (Proc. GD’ 94), pages 104–110, 1995.

    Google Scholar 

  19. P. Rosenstiehl and R.E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom., 1:343–353, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. Schnyder. Planar graphs and poset dimension. Order, 5:323–343, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Schnyder. Embedding planar graphs on the grid. Proc. 1st ACM-SIAM Symp. Discrete Algorithms, pages 138–148, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonichon, N., Le Saëc, B., Mosbah, M. (2002). Optimal Area Algorithm for Planar Polyline Drawings. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2002. Lecture Notes in Computer Science, vol 2573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36379-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-36379-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00331-1

  • Online ISBN: 978-3-540-36379-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics