Nothing Special   »   [go: up one dir, main page]

Skip to main content

Flat-State Connectivity of Linkages under Dihedral Motions

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2002)

Abstract

We explore which classes of linkages have the property that each pair of their flat states—that is, their embeddings in ℝ2 without self-intersection—can be connected by a continuous dihedral motion that avoids self-intersection throughout. Dihedral motions preserve all angles between pairs of incident edges, which is most natural for protein models. Our positive results include proofs that open chains with nonacute angles are flat-state connected, as are closed orthogonal unit-length chains. Among our negative results is an example of an orthogonal graph linkage that is flat-state disconnected. Several additional results are obtained for other restricted classes of linkages. Many open problems are posed.

Research initiated at the 17th Winter Workshop on Computational Geometry, Bellairs Research Institute of McGill University, Feb. 1-8, 2002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oswin Aichholzer, Carmen Cortés, Erik D. Demaine, Vida Dujmović, Jeff Erickson, Henk Meijer, Mark Overmars, Belén Palop, Suneeta Ramaswami, and Godfried T. Toussaint. Flipturning polygons. In Proc. Japan Conf. Discrete Comput. Geom., Lecture Notes in Computer Science, Tokyo, Japan, November 2000. To appear in Discrete Comput. Geom.

    Google Scholar 

  2. Greg Aloupis, Erik D. Demaine, Henk Meijer, Joseph O’Rourke, Ileana Streinu, and Godfried Toussaint. Flat-state connectedness of fixed-angle chains: Special acute chains. In Proc. 14th Canad. Conf. Comput. Geom., August 2002.

    Google Scholar 

  3. T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. Locked and unlocked polygonal chains in 3D. Discrete Comput. Geom., 26(3):269–282, 2001.

    MATH  MathSciNet  Google Scholar 

  4. J. Cantarella and H. Johnston. Nontrivial embeddings of polygonal intervals and unknots in 3-space. J. Knot Theory Ramifications, 7:1027–1039, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying polygonal cycles. In Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci., pages 432–442. IEEE, November 2000.

    Google Scholar 

  6. Maxim D. Frank-Kamenetskii. Unravelling DNA. Addison-Wesley, 1997.

    Google Scholar 

  7. M. Lal. Monte Carlo computer simulations of chain molecules. Molecular Physics, 17:57–64, 1969.

    Article  Google Scholar 

  8. B. MacDonald, N. Jan, D. L. Hunter, and M. O. Steinitz. Polymer conformations through wiggling. Journal of Physics A: Mathematical and General Physics, 18:2627–2631, 1985.

    Article  Google Scholar 

  9. N. Madras, A. Orlitsky, and L. A. Shepp. Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length. Journal of Statistical Physics, 58:159–183, 1990.

    Article  MathSciNet  Google Scholar 

  10. Neal Madras and Gordon Slade. The Self-Avoiding Walk. Birkháuser, 1993.

    Google Scholar 

  11. M. Soss and G. T. Toussaint. Geometric and computational aspects of polymer reconfiguration. J. Math. Chemistry, 27(4):303–318, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. E. Soteros and S. G. Whittington. Polygons and stars in a slit geometry. Journal of Physics A: Mathematical and General Physics, 21:L857–L861, 1988.

    Article  MathSciNet  Google Scholar 

  13. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci. IEEE, November 2000. 443–453.

    Google Scholar 

  14. G. T. Toussaint. The Erdós-Nagy theorem and its ramifications. In Proc. 11th Canad. Conf. Comput. Geom., pages 9–12, 1999.

    Google Scholar 

  15. S. G. Whittington. Self-avoiding walks with geometrical constraints. Journal of Statistical Physics, 30(2):449–456, 1983.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aloupis, G. et al. (2002). Flat-State Connectivity of Linkages under Dihedral Motions. In: Bose, P., Morin, P. (eds) Algorithms and Computation. ISAAC 2002. Lecture Notes in Computer Science, vol 2518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36136-7_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-36136-7_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00142-3

  • Online ISBN: 978-3-540-36136-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics