Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning to Assess from Pair-Wise Comparisons

  • Conference paper
  • First Online:
Advances in Artificial Intelligence — IBERAMIA 2002 (IBERAMIA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2527))

Included in the following conference series:

  • 889 Accesses

Abstract

In this paper we present an algorithm for learning a function able to assess objects. We assume that our teachers can provide a collection of pairwise comparisons but encounter certain difficulties in assigning a number to the qualities of the objects considered. This is a typical situation when dealing with food products, where it is very interesting to have repeatable, reliable mechanisms that are as objective as possible to evaluate quality in order to provide markets with products of a uniform quality. The same problem arises when we are trying to learn user preferences in an information retrieval system or in configuring a complex device. The algorithm is implemented using a growing variant of Kohonen’s Self-Organizing Maps (growing neural gas), and is tested with a variety of data sets to demonstrate the capabilities of our approach.

The research reported in this paper has been supported in part under MCyT and Feder grant TIC2001-3579

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C., Merz, C. J.: UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science (1998)

  2. Bollen A.F., Kusabs N.J., Holmes G. and Hall M.A.: Comparison of consumer and producer perceptions of mushroom quality. Proc. Integrated View of Fruit and Vegetable Quality International Multidisciplinary Conference, W.J. Florkowski, S.E. Prussia and R.L. Shewfelt (eds.), Georgia (2002) 303–311

    Google Scholar 

  3. Branting, K.L., Broos, P.S.: Automated Acquisition of User Preferences. International Journal of Human-Computer Studies, (1997) 46:55–77.

    Article  Google Scholar 

  4. Branting, K.L.: Active Exploration in Instance-Based Preference Modeling, Proceedings of the Third International Conference on Case-Based Reasoning (ICCBR-99), Germany (1999)

    Google Scholar 

  5. Cohen, W.W., Shapire, R.E., Singer, Y.: Learning to order things. Journal of Artificial Intelligence Research (1999) 10, 243–270

    MATH  MathSciNet  Google Scholar 

  6. Del Coz, J. J., Luaces, O., Quevedo, J. R., Alonso, J., Ranilla, J., Bahamonde, A.: Self-Organizing Cases to Find Paradigms. Lecture Notes in Computer Sciences, Springer-Verlag, Berlin (1999) Vol. 1606, 527–536

    Google Scholar 

  7. Fritzke, B.: A growing neural gas network learns topologies, Advances in Neural Information Processing Systems 7, G. Tesauro, D. S. Touretzky and T. K. Leen (eds.), MIT Press, Cambridge MA (1995) 625–632

    Google Scholar 

  8. Goyache, F., Bahamonde, A. Alonso, J., López, S., Alonso, J., del Coz J.J., Quevedo, J.R., Ranilla, J., Luaces, O., Alvarez, I., Royo, L. and Díez J.: The usefulness of Artificial Intelligence techniques to assess subjective quality of products in the food industry. Trends in Food Science and Technology, in press (2002)

    Google Scholar 

  9. Goyache, F., del Coz, J.J., Quevedo, J.R., López, S., Alonso, J., Ranilla, J., Luaces, O., Alvarez, I. and Bahamonde, A.: Using artificial intelligence to design and implement a morphological assessment system in beef cattle. Animal Science (2001), 73: 49–60

    Google Scholar 

  10. Kohonen, T.: Self-Organizing Maps. Springer Series of Information Science. Springer-Verlag, Berlin (1995)

    Google Scholar 

  11. Kusabs N., Bollen F., Trigg L., Holmes G., Inglis S.: Objective measurement of mushroom quality. Proc. New Zealand Institute of Agricultural Science and the New Zealand Society for Horticultural Science Annual Convention, Hawke’s Bay, New Zealand (1998)

    Google Scholar 

  12. Meilgaard, M., Civille, G.V., Carr, B.T.: Sensory evaluation techniques. CRC Press, Inc., Boca Raton, Florida (1987)

    Google Scholar 

  13. Murthy, S. K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research, (1994) 2, 1–32

    Article  MATH  Google Scholar 

  14. Quevedo, J.R., Bahamonde, A.: Aprendizaje de Funciones Usando Inducción sobre Clasificaciones Discretas. Proceedings CAEPIA’99 VIII Conferencia de la Asociación Española para la Inteligencia Artificial, Murcia, Spain (1999) Vol. I, 64–71

    Google Scholar 

  15. Quinlan, J. R.: Learning with continuous classes. Proceedings 5th Australian Joint Conference on Artificial Intelligence. World Scientific, Singapore, (1992), 343–348.

    Google Scholar 

  16. Tesauro, G.: Connectionist learning of expert preferences by comparison training. In Advances in Neural Information Processing Systems, Proceedings NIPS’88, MIT Press (1989) 99–106

    Google Scholar 

  17. Utgoff, J. P., Clouse, J.: Two kinds of training information for evaluation function learning. In Proceedings AAAI’91, MIT Press (1991) 596–600

    Google Scholar 

  18. Utgoff, J.P., Saxema, S.: Learning preference predicate. In Proceedings of the Fourth International Workshop on Machine Learning, Morgan Kaufmann, San Francisco (1987) 115–121

    Google Scholar 

  19. Wang Y., Witten I.H.: Inducing of Model Trees for Predicting Continuous Classes. Proceedings of European Conference on Machine Learning. Prague, Czech Republic (1997) 128–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díez, J. et al. (2002). Learning to Assess from Pair-Wise Comparisons. In: Garijo, F.J., Riquelme, J.C., Toro, M. (eds) Advances in Artificial Intelligence — IBERAMIA 2002. IBERAMIA 2002. Lecture Notes in Computer Science(), vol 2527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36131-6_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-36131-6_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00131-7

  • Online ISBN: 978-3-540-36131-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics