Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel Algorithm and Architecture for Public-Key Cryptosystem

  • Conference paper
  • First Online:
EurAsia-ICT 2002: Information and Communication Technology (EurAsia-ICT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2510))

Included in the following conference series:

Abstract

This paper proposes a new parallel algorithm and architecture for two modular multiplications over GF(2m). The algorithm uses the property of irreducible all one polynomial as a modulus and computes two modular multiplications in parallel. The architecture is based on cellular automata and has smaller area and time complexity than previous architectures. Since the proposed architecture has regularity, modularity and concurrency, it is suitable for VLSI implementation. The proposed architecture can be used as a basic architecture for the public-key cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. S. Reed and T. K. Truong, “The use of finite fields to compute convolutions,” IEEE Trans. on Information Theory, IT-21, pp. 208–13, Mar. 1975.

    Google Scholar 

  2. B. Schneier, Applied Cryptography-second edition, John Wiley&Sons, Inc. 1996.

    Google Scholar 

  3. V. Neumann, The theory of self-reproducing automata, Univ. of Illinois Press, Urbana & London, 1966.

    Google Scholar 

  4. S. Wolfram, “Statistical mechanics of cellular automata,” Rev. of Modern Physics, vol. 55, pp. 601–644, 1983.

    Article  MathSciNet  Google Scholar 

  5. W. Pries, A. Thanailakis, and H. C. Card, “Group properties of cellular automata and VLSI applications,” IEEE Trans. on Computers, C-35, vol. 12, pp. 1013–1024, Dec. 1986.

    Google Scholar 

  6. E. R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1986.

    Google Scholar 

  7. C. S. Yeh. S. Reed, and T. K. Truong, “Systolic multipliers for finite fields GF(2m),” IEEE Trans. on Computers, vol. C-33, pp. 357–360, Apr. 1984.

    Google Scholar 

  8. S. K. Jain and L. Song, “Efficient Semisystolic Architectures for finite field Arithmetic,” IEEE Trans. on VLSI Systems, vol. 6, no. 1, pp. 101–113, Mar. 1998.

    Article  Google Scholar 

  9. J. L. Massey and J. K. Omura, Computational method and apparatus for finite field arithmetic, U. S. Patent application, submitted 1981.

    Google Scholar 

  10. S. W. Wei, “A systolic power-sum circuit for GF(2m),” IEEE Trans. on Computers, vol. 43, pp. 226–229, Feb. 1994.

    Google Scholar 

  11. T. Itoh and S. Tsujii, “Structure of parallel multipliers for a class of finite fields GF(2m),” Info. Comp., vol. 83, pp. 21–40, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. T. J. Fenn, M. G. Parker, M. Benaissa, and D. Taylor, “Bit-serial Multiplication in GF(2m) using irreducible all one polynomials,” IEE. Proc. Comput. Digit. Tech., vol. 144, no. 6, Nov. 1997.

    Google Scholar 

  13. H. S. Kim, Bit-Serial AOP Arithmetic Architecture for Modular Exponentiation, Ph. D. Thesis, Kyungpook National Univ., 2002.

    Google Scholar 

  14. P. Pal. Choudhury and R. Barua, “Cellular Automata Based VLSI Architecture for Computing Multiplication and Inverses in GF(2m),” IEEE 7 th International Conference on VLSI Design, Jan. 1994.

    Google Scholar 

  15. D. E. Knuth, The Art of Computer Programming. Volume 2: Seminumerical Algorithms, Addison-Wesley, Reading, Massachusetts, 2nd edition, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, HS., Yoo, KY. (2002). Parallel Algorithm and Architecture for Public-Key Cryptosystem. In: Shafazand, H., Tjoa, A.M. (eds) EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science, vol 2510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36087-5_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-36087-5_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00028-0

  • Online ISBN: 978-3-540-36087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics