Abstract
Dropping probability of handoff calls and blocking probability of new calls are two important QoS measures for cellular networks. Call admission policies, such as fractional guard channel and uniform fractional guard channel policies are used to maintain the pre-specified level of QoS. Since the parameters of network traffics are unknown and time varying, the optimal number of guard channels is not known and varies with time. In this paper, we introduce a new dynamic guard channel policy, which adapts the number of guard channels in a cell based on the current estimate of dropping probability of handoff calls. The proposed algorithm minimizes blocking probability of new calls subject to the constraint on the dropping probability of handoff calls. In the proposed policy, a learning automaton is used to find the optimal number of guard channels. The proposed algorithm doesn’t need any a priori information about input traffic. The simulation results show that performance of this algorithm is close to the performance of guard channel policy for which we need to know all traffic parameters in advance. Two advantages of the proposed policy are that it is fully autonomous and adaptive. The first advantage implies that, the proposed policy does not require any exchange of information between the neighboring cells and hence the network overheads due to the information exchange will be zero. The second one implies that, the proposed policy does not need any priori information about input traffic and the traffic may vary.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. Hong and S. Rappaport, “Traffic Modelling and Performance Analysis for Cellular Mobile Radio Telephone Systems with Priotrized and Nonpriotorized Handoffs Procedure,” IEEE Transactions on Vehicular Technology, vol. 35, pp. 77–92, Aug. 1986.
S. Oh and D. Tcha, “Priotrized Channel Assignment in a Cellular Radio Network,” IEEE Transactions on Communications, vol. 40, pp. 1259–1269, July 1992.
R. Ramjee, D. Towsley, and R. Nagarajan, “On Optimal Call Admission Control in Cellular Networks,” Wireless Networks, vol. 3, pp. 29–41, 1997.
G. Haring, R. Marie, R. Puigjaner, and K. Trivedi, “Loss Formulas and Their Application to Optimization for Cellular Networks,” IEEE Transactions on Vehicular Technology, vol. 50, pp. 664–673, May 2001.
P. R. Srikantakumar and K. S. Narendra, “A Learning Model for Routing in Telephone Networks,” SIAM Journal of Control and Optimization, vol. 20, pp. 34–57, Jan. 1982.
O. V. Nedzelnitsky and K. S. Narendra, “Nonstationary Models of Learning Automata Routing in Data Communication Networks,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-17, pp. 1004–1015, Nov. 1987.
B. J. Oommen and E. V. de St. Croix, “Graph Partitioning Using Learning Automata,” IEEE Transactions on Commputers, vol. 45, pp. 195–208, Feb. 1996.
H. Beigy and M. R. Meybodi, “Backpropagation Algorithm Adaptation Parameters using Learning Automata,” International Journal of Neural Systems, vol. 11, no. 3, pp. 219–228, 2001.
M. R. Meybodi and H. Beigy, “New Class of Learning Automata Based Schemes for Adaptation of Backpropagation Algorithm Parameters,” International Journal of Neural Systems, vol. 12, pp. 45–68, Feb. 2002.
M. R. Meybodi and H. Beigy, “A Note on Learning Automata Based Schemes for Adaptation of BP Parameters,” Accepted for Publication in the Journal of Neuro Computing, To Appear.
B. J. Oommen and T. D. Roberts, “Continuous Learning Automata Solutions to the Capacity Assignment Problem,” IEEE Transactions on Commputers, vol. 49, pp. 608–620, June 2000.
K. S. Narendra and K. S. Thathachar, Learning Automata: An Introduction. New York: Printice-Hall, 1989.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beigy, H., Meybodi, M. (2002). A Learning Automata Based Dynamic Guard Channel Scheme. In: Shafazand, H., Tjoa, A.M. (eds) EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science, vol 2510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36087-5_75
Download citation
DOI: https://doi.org/10.1007/3-540-36087-5_75
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00028-0
Online ISBN: 978-3-540-36087-2
eBook Packages: Springer Book Archive