Abstract
In this paper, we propose a new data mining technique that can address the temporal relation rules of temporal interval data by using Allen’s theory. We present two new algorithms for discovering temporal relationships: one is to preprocess an algorithm for the generalization of temporal interval data and to transform timestamp data into temporal interval data; and the other is to use a temporal relation algorithm for mining temporal relation rules and to discover the rules from temporal interval data. This technique can provide more useful knowledge in comparison with other conventional data mining techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. F. Roddick, M. Spiliopoulou: Temporal data mining: survey and issues, Research Report ACRC-99-007, University of South Australia(1999)
J. Allen: Maintaining Knowledge about Temporal Intervals, Comm. Of the ACM, Vol. 26, No. 11, Nov. (1983)
J.Y. Lee, K.J. Oh, Keun Ho Ryu: Integration with Spatiotemporal Relationship Operators in SQL, ACM-GIS (1998)
Dong Ho Kim, Keun Ho Ryu, Chie Hang Park: Design and implementation of spatiotemporal database query processing system, Journal of systems and software, Dec., (2001)
R. Agrawal, R. Srikant: Mining sequential patterns, Int’l. Conf. on Data Engineering, Taipei, Taiwan (1995)
X. Chen, I. Petrounias: A framework for temporal data mining, Int’l. Conf. on Database and Expert Systems Applications (1998).
C. Rainsford, J. F. Roddick: Temporal data mining in information systems: a model, Australasian Conf. on Information Systems (1996)
M. H. Saraee, B. Theodoulidis: Knowledge discovery in temporal databases, IEEE Colloquium on Knowledge Discovery in Databases (1995)
R. Srikant, R. Agrawal: Mining sequential patterns: generalisations and performance improvements, In Proc. Int’l. Conf. on Extending Database Technology, Avignon, France, Springer-Verlag(1996)
Minos N. Garofalakis, Rajeev Rastogi, Kyuseok Shim: SPIRIT: Sequential Pattern Mining with Regular Expression Constraints, the VLDB Conf., Edinburgh, Scotland, UK (1999)
H. Mannila, H. Toivonen: Discovering generalized episodes using minimal occurrences, Int’l Conf. on Knowledge Discovery in Databases and Data Mining (KDD-96), Portland, USA (1996)
J. Han, G. Dong, Y. Yin: Efficient Mining of Partial Periodic Patterns in Time Series Database, Int’l. Conf. on Data Engineering, Sydney, Australia (1999)
R. Agrawal, King-Ip Lin, Harpreet S. Sawhney, Kyuseok Shim: Fast similarity search in the presence of noise, scaling, and translation in time series databases, the VLDB Conf., Zurich, Switzerland (1995)
C. Faloutsos, M. Ranganathan, Y. Manolopoulos: Fast subsequence matching in time-series databases, the ACM SIGMOD Conf. on Management of Data, Minneapolis, USA (1994)
B. Ozden, S. Ramaswamy, and A. Silberschatz: Cyclic association rules, Int’l. Conf. on Data Engineering, Orlando, USA (1998)
X. Chen, I. Petrounias, H. Heathfield: Discovering temporal association rules in temporal databases, Int’l. Workshop on Issues and Applications of Database Technology (1998)
S. Ramaswamy, S. Mahajan, A. Silberschatz: On the discovery of interesting patterns in association rules, the VLDB Conf., New York City, USA (1998)
J. M. Ale, G. H. Rossi: An Approach to Discovering Temporal Association Rules, SAC’00, Italy (2000)
C. Rainsford: Accommodating Temporal Semantics in Knowledge Discovery and Data Mining, PhD Thesis, University of South Australia (1998)
Y. J. Lee: A Data Mining Technique for Discovering Temporal Relation Rules, PhD Thesis, Chungbuk National University (2001)
Yun, H., Ha, D., Hwang, B., Ryu, K.: Mining Association Rules on Significant Rare Data using Relative Support. Journal of Systems and Software, 2002 (accepted).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, J.W., Lee, Y.J., Kim, H.K., Hwang, B.H., Ryu, K.H. (2002). Discovering Temporal Relation Rules Mining from Interval Data. In: Shafazand, H., Tjoa, A.M. (eds) EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science, vol 2510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36087-5_7
Download citation
DOI: https://doi.org/10.1007/3-540-36087-5_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00028-0
Online ISBN: 978-3-540-36087-2
eBook Packages: Springer Book Archive