Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovering Temporal Relation Rules Mining from Interval Data

  • Conference paper
  • First Online:
EurAsia-ICT 2002: Information and Communication Technology (EurAsia-ICT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2510))

Included in the following conference series:

Abstract

In this paper, we propose a new data mining technique that can address the temporal relation rules of temporal interval data by using Allen’s theory. We present two new algorithms for discovering temporal relationships: one is to preprocess an algorithm for the generalization of temporal interval data and to transform timestamp data into temporal interval data; and the other is to use a temporal relation algorithm for mining temporal relation rules and to discover the rules from temporal interval data. This technique can provide more useful knowledge in comparison with other conventional data mining techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. F. Roddick, M. Spiliopoulou: Temporal data mining: survey and issues, Research Report ACRC-99-007, University of South Australia(1999)

    Google Scholar 

  2. J. Allen: Maintaining Knowledge about Temporal Intervals, Comm. Of the ACM, Vol. 26, No. 11, Nov. (1983)

    Google Scholar 

  3. J.Y. Lee, K.J. Oh, Keun Ho Ryu: Integration with Spatiotemporal Relationship Operators in SQL, ACM-GIS (1998)

    Google Scholar 

  4. Dong Ho Kim, Keun Ho Ryu, Chie Hang Park: Design and implementation of spatiotemporal database query processing system, Journal of systems and software, Dec., (2001)

    Google Scholar 

  5. R. Agrawal, R. Srikant: Mining sequential patterns, Int’l. Conf. on Data Engineering, Taipei, Taiwan (1995)

    Google Scholar 

  6. X. Chen, I. Petrounias: A framework for temporal data mining, Int’l. Conf. on Database and Expert Systems Applications (1998).

    Google Scholar 

  7. C. Rainsford, J. F. Roddick: Temporal data mining in information systems: a model, Australasian Conf. on Information Systems (1996)

    Google Scholar 

  8. M. H. Saraee, B. Theodoulidis: Knowledge discovery in temporal databases, IEEE Colloquium on Knowledge Discovery in Databases (1995)

    Google Scholar 

  9. R. Srikant, R. Agrawal: Mining sequential patterns: generalisations and performance improvements, In Proc. Int’l. Conf. on Extending Database Technology, Avignon, France, Springer-Verlag(1996)

    Google Scholar 

  10. Minos N. Garofalakis, Rajeev Rastogi, Kyuseok Shim: SPIRIT: Sequential Pattern Mining with Regular Expression Constraints, the VLDB Conf., Edinburgh, Scotland, UK (1999)

    Google Scholar 

  11. H. Mannila, H. Toivonen: Discovering generalized episodes using minimal occurrences, Int’l Conf. on Knowledge Discovery in Databases and Data Mining (KDD-96), Portland, USA (1996)

    Google Scholar 

  12. J. Han, G. Dong, Y. Yin: Efficient Mining of Partial Periodic Patterns in Time Series Database, Int’l. Conf. on Data Engineering, Sydney, Australia (1999)

    Google Scholar 

  13. R. Agrawal, King-Ip Lin, Harpreet S. Sawhney, Kyuseok Shim: Fast similarity search in the presence of noise, scaling, and translation in time series databases, the VLDB Conf., Zurich, Switzerland (1995)

    Google Scholar 

  14. C. Faloutsos, M. Ranganathan, Y. Manolopoulos: Fast subsequence matching in time-series databases, the ACM SIGMOD Conf. on Management of Data, Minneapolis, USA (1994)

    Google Scholar 

  15. B. Ozden, S. Ramaswamy, and A. Silberschatz: Cyclic association rules, Int’l. Conf. on Data Engineering, Orlando, USA (1998)

    Google Scholar 

  16. X. Chen, I. Petrounias, H. Heathfield: Discovering temporal association rules in temporal databases, Int’l. Workshop on Issues and Applications of Database Technology (1998)

    Google Scholar 

  17. S. Ramaswamy, S. Mahajan, A. Silberschatz: On the discovery of interesting patterns in association rules, the VLDB Conf., New York City, USA (1998)

    Google Scholar 

  18. J. M. Ale, G. H. Rossi: An Approach to Discovering Temporal Association Rules, SAC’00, Italy (2000)

    Google Scholar 

  19. C. Rainsford: Accommodating Temporal Semantics in Knowledge Discovery and Data Mining, PhD Thesis, University of South Australia (1998)

    Google Scholar 

  20. Y. J. Lee: A Data Mining Technique for Discovering Temporal Relation Rules, PhD Thesis, Chungbuk National University (2001)

    Google Scholar 

  21. Yun, H., Ha, D., Hwang, B., Ryu, K.: Mining Association Rules on Significant Rare Data using Relative Support. Journal of Systems and Software, 2002 (accepted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J.W., Lee, Y.J., Kim, H.K., Hwang, B.H., Ryu, K.H. (2002). Discovering Temporal Relation Rules Mining from Interval Data. In: Shafazand, H., Tjoa, A.M. (eds) EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science, vol 2510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36087-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-36087-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00028-0

  • Online ISBN: 978-3-540-36087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics