Nothing Special   »   [go: up one dir, main page]

Skip to main content

Convergence Time Analysis for the Multi-objective Counting Ones Problem

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2632))

Included in the following conference series:

Abstract

We propose a multi-objective generalisation for the well known Counting Ones problem, called the Multi-objective Counting Ones (MOCO) function. It is shown that the problem has four qualitative different regions. We have constructed a convergence time model for the Simple Evolutionary Multi-objective Optimiser (SEMO) algorithm. The analysis gives insight in the convergence behaviour in each region of the MOCO problem. The model predicts a ℓ2 ln ℓ running time, which is confirmed by the experimental runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.A.N Bosman and D. Thierens. The balance between proximity and diversity in multi-objective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2003. Accepted for publication.

    Google Scholar 

  2. K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, Chichester, UK, 2001.

    MATH  Google Scholar 

  3. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs. Evolutionary Computation, 6(2):185–196, 1998.

    Article  Google Scholar 

  4. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Hanne. On the convergence of multiobjective evolutioanry algorithms. European Journal of Operations Research, 117(3):553–564, 1999.

    Article  MATH  Google Scholar 

  6. T. Hanne. Global multiobjective optimization with evolutionary algorithms: selection mechanisms and mutation control. In Proceedings of the International Conference on Multi-Criterion Optimization, pages 197–212. Springer, 2001.

    Google Scholar 

  7. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity in evolutionary computation. Evolutionary Computation, 10(3):263–282, 2002.

    Article  Google Scholar 

  8. M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running time analysis of mulit-objective evolutionary algorithms on a simple discrete optimization problem. In J.J. Merelo Guervós et al., editor, Proceedings of the 7th International Conference on Parallel Problem Solving from Nature, pages 44–53. Springer, 2002.

    Google Scholar 

  9. H. Muehlenbein. How genetic algorithms really work: Mutation and hill-climbing. In R. Manner et B. Manderick, editor, Proceedings of the International Conference on Parallel Problem Solving from Nature, pages 15–26. North-Holland, 1992.

    Google Scholar 

  10. H. Muhlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm: I. continuous parameter optimization. Evolutionary Computation, 1(1):25–49, 1993.

    Article  Google Scholar 

  11. G. Rudolph. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In Proceedings of the International Conference on Evolutionary Computation, pages 511–516. IEEE Press, 1998.

    Google Scholar 

  12. G. Rudolph and A. Agapie. Convergence properties of some multi-objective evolutionary algorithms. In Proceedings of the International Congress on Evolutionary Computation, pages 1010–1016. IEEE Press, 2000.

    Google Scholar 

  13. D. Thierens and D.E. Goldberg. Convergence models of genetic algorithm selection schemes. In International Conference on Evolutionary Computation: The Third Conference on Parallel Problem Solving from Nature, pages 119–129. Springer-Verlag, 1994.

    Google Scholar 

  14. D. Thierens, D.E. Goldberg, and A.G. Pereira. Domino convergence, drift, and the temporal-salience structure of problems. In Proceedings of the 1998 IEEE World Congress on Computational Intelligence, pages 535–540. IEEE Press, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thierens, D. (2003). Convergence Time Analysis for the Multi-objective Counting Ones Problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds) Evolutionary Multi-Criterion Optimization. EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-36970-8_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01869-8

  • Online ISBN: 978-3-540-36970-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics