Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tree Adjoining Grammars, Language Bias, and Genetic Programming

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2610))

Included in the following conference series:

Abstract

In this paper, we introduce a new grammar guided genetic programming system called tree-adjoining grammar guided genetic programming (TAG3P+), where tree-adjoining grammars (TAGs) are used as means to set language bias for genetic programming. We show that the capability of TAGs in handling context-sensitive information and categories can be useful to set a language bias that cannot be specified in grammar guided genetic programming. Moreover, we bias the genetic operators to preserve the language bias during the evolutionary process. The results pace the way towards a better understanding of the importance of bias in genetic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf W., Nordin P., Keller R.E., and Francone F.D.: Genetic Programming: An Introduction. Morgan Kaufmann Pub (1998).

    Google Scholar 

  2. Candito M. H. and Kahane S.: Can the TAG Derivation Tree Represent a Semantic Graph? An Answer in the Light of Meaning-Text Theory. In: Proceedings of TAG+4, Philadelphia, (1999) 25–28.

    Google Scholar 

  3. Cohen, W. W.: Grammatically Biased Learning: Learning Logic Programs Using an Explicit Antecedent Description Language. Technical Report, AT and Bell Laboratories, Murray Hill, NJ, (1993).

    Google Scholar 

  4. Gruau F.: On Using Syntactic Constraints with Genetic Programming. In: Advances in Genetic Programming II, The MIT Press, (1996) 377–394.

    Google Scholar 

  5. Geyer-Schulz A.: Fuzzy Rule-Based Expert Systems and Genetic Machine Learning. Physica-Verlag, Germany, (1995).

    Google Scholar 

  6. Hoai N. X.: Solving the Symbolic Regression Problem with Tree Adjunct Grammar Guided Genetic Programming: The Preliminary Result. In: the Proceedings of 5th Australasia-Japan Workshop in Evolutionary and Intelligent Systems, (2001) 52–61.

    Google Scholar 

  7. Hoai N. X., Mac Kay R. I., and Essam D.: Solving the Symbolic Regression Problem with Tree Adjunct Grammar Guided Genetic Programming. Australian Journal of Intelligent Information Processing Systems, 7(3), (2002) 114–121.

    Google Scholar 

  8. Hoai N.X., Y. Shan, and R. I. MacKay: Is Ambiguity is Useful or Problematic for Genetic Programming? A Case Study. To appear in: The Proceedings of 4th Asia-Pacific Conference on Evolutionary Computation and Simulated Learning (SEAL’02), (2002).

    Google Scholar 

  9. Joshi, A. K. and Schabes, Y.: Tree Adjoining Grammars. In: Handbook of Formal Languages, Rozenberg G. and Saloma A. (eds) Springer-Verlag, (1997) 69–123.

    Google Scholar 

  10. Joshi, A. K.. Levy, L. S., and Takahashi, M.: Tree Adjunct Grammars. Journal of Computer and System Sciences, 10 (1), (1975) 136–163.

    Google Scholar 

  11. Koza, J.: Genetic Programming, The MIT Press (1992).

    Google Scholar 

  12. Koza, J.: Genetic Programming II, The MIT Press (1994).

    Google Scholar 

  13. Mitchell T. M.: Machine Learning. McGraw-Hill, (1997).

    Google Scholar 

  14. Micthell T. M., Utgoff P., and BanerJi R.: Learning by Experimentation: Acquiring and Refining Problem-Solving Heuristics. In: Machine Learning: An Artificial Intelligence Approach. Springer-Verlag, (1984) 163–190.

    Google Scholar 

  15. O’Neil M. and Ryan C.: Grammatical Evolution. IEEE Trans on Evolutionary Computation, 4 (4), (2000) 349–357.

    Google Scholar 

  16. Schabes Y.: Mathemantical and Computational Aspects of Lexicalized Grammars, Ph.D. Thesis, University of Pennsylvania, USA, (1990).

    Google Scholar 

  17. Shanker V.: A Study of Tree Adjoining Grammars. PhD. Thesis, University of Pennsylvania, USA, 1987.

    Google Scholar 

  18. Utgoff P.: Machine Learning of Inductive Bias. Kluwer Academic Publisher, (1986).

    Google Scholar 

  19. Weir D. J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD. Thesis, University of Pennsylvania, USA, 1988.

    Google Scholar 

  20. Valiant L.: A Theory of the Learnable. ACM, 27(11), (1984) 1134–1142.

    Article  MATH  Google Scholar 

  21. Whigham P. A.: Search Bias, Language Bias and Genetic Programming. In: Genetic Programming 1996, The MIT Press, USA, (1996) 230–237.

    Google Scholar 

  22. Whigham P. A.: Grammatical Bias for Evolutionary Learning. Ph.D Thesis, University of New South Wales, Australia, (1996).

    Google Scholar 

  23. Wolpert D. and Macready W.: No Free Lunch Theorems for Search. Technical Report SFITR-95-02-010, Santa Fem, NM, 87501.

    Google Scholar 

  24. Wong M. L. and Leung K. S.: Evolutionary Program Induction Directed by Logic Grammars. Evolutionary Computation, 5 (1997) 143–180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoai, N.X., McKay, R., Abbass, H. (2003). Tree Adjoining Grammars, Language Bias, and Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds) Genetic Programming. EuroGP 2003. Lecture Notes in Computer Science, vol 2610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36599-0_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-36599-0_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00971-9

  • Online ISBN: 978-3-540-36599-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics