Abstract
This paper addresses the problem of identification of piecewise affine (PWA) models. This problem involves the estimation from data of both the parameters of the affine submodels and the partition of the PWA map. The procedure that we propose for PWA identification exploits a greedy strategy for partitioning an infeasible system of linear inequalities into a minimum number of feasible subsystems: this provides an initial clustering of the datapoints. Then a refinement procedure is applied repeatedly to the estimated clusters in order to improve both the data classification and the parameter estimation. The partition of the PWA map is finally estimated by considering pairwise the clusters of regression vectors, and by finding a separating hyperplane for each of such pairs. We show that our procedure does not require to fix a priori the number of affine submodels, which is instead automatically estimated from the data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31 (1995) 1691–1724
Juditsky, A., Hjalmarsson, H., Benveniste, A., Delyon, B., Ljung, L., Sjöberg, J., Zhang, Q.: Nonlinear black-box models in system identification: mathematical foundations. Automatica 31 (1995) 1725–1750
Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Automatic Control 45 (2000) 1864–1876
Heemels, W., Schutter, B.D., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37 (2001) 1085–1091
Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique for the identification of piecewise affine systems. Automatica 39 (2003) 205–217
Bemporad, A., Roll, J., Ljung, L.: Identification of hybrid systems via mixedinteger programming. In: Proc. 40th IEEE Conf. on Decision and Control. (2001) 786–792
Münz, E., Krebs, V.: Identification of hybrid systems using apriori knowledge. In: Proc. 15th IFAC World Congress. (2002)
Amaldi, E., Mattavelli, M.: The MIN PFS problem and piecewise linear model estimation. Discrete Applied Mathematics 118 (2002) 115–143
Milanese, M., Vicino, A.: Optimal estimation theory for dynamic systems with set membership uncertainty: an overview. Automatica 27 (1991) 997–1009
Milanese, M., Norton, J.P., Piet-Lahanier, H., (eds.), E.W.: Bounding Approaches to System Identification. Plenum Press, New York (1996)
Vapnik, V.: Statistical Learning Theory. John Wiley (1998)
Amaldi, E., Hauser, R.: Randomized relaxation methods for the maximum feasible subsystem problem. Technical Report 2001-90, DEI, Politecnico di Milano, Italy (2001)
Agmon, S.: The relaxation method for linear inequalities. Canadian J. Math. 6 (1954) 382–392
Motzkin, T., Schoenberg, I.: The relaxation method for linear inequalities. Canadian J. Math. 6 (1954) 393–404
Bradley, P.S., Mangasarian, O.L.: k-plane clustering. Journal of Global Optimization 16 (2000) 23–32
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bemporad, A., Garulli, A., Paoletti, S., Vicino, A. (2003). A Greedy Approach to Identification of Piecewise Affine Models. In: Maler, O., Pnueli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2003. Lecture Notes in Computer Science, vol 2623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36580-X_10
Download citation
DOI: https://doi.org/10.1007/3-540-36580-X_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00913-9
Online ISBN: 978-3-540-36580-8
eBook Packages: Springer Book Archive