Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast Sparse Matrix-Vector Multiplication for TeraFlop/s Computers

  • Conference paper
  • First Online:
High Performance Computing for Computational Science — VECPAR 2002 (VECPAR 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2565))

Abstract

Eigenvalue problems involving very large sparse matrices are common to various fields in science. In general, the numerical core of iterative eigenvalue algorithms is a matrix-vector multiplication (MVM) involving the large sparse matrix. We present three different programming approaches for parallel MVM on present day supercomputers. In addition to a pure message-passing approach, two hybrid parallel implementations are introduced based on simultaneous use of message-passing and shared-memory programming models. For a modern SMP cluster (HITACHI SR8000) performance and scalability of the hybrid implementations are discussed and compared with the pure message-passing approach on massively-parallel systems (CRAY T3E), vector computers (NEC SX5e) and distributed shared-memory systems (SGI Origin3800).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.W. Bova et al., The International Journal of High Performance Computing Applications, 14, pp. 49–60, 2000. 287

    Article  Google Scholar 

  2. L.A. Smith and P. Kent, Proceedings of the First European Workshop on OpenMP, Lund, Sweden, Sept. 1999, pp. 6–9. 287

    Google Scholar 

  3. D. S. Henty, Performance of Hybrid Message-Passing and Shared-Memory Parallelism for Discrete Element Modelling. In Proceedings of SC2000, 2000. 287

    Google Scholar 

  4. H. Shan et al., A Comparison of Three Programming Models for Adaptive Applications on the Origin2000. In Proceedings of SC2000, 2000. 287

    Google Scholar 

  5. W.D. Gropp et al., Performance Modeling and Tuning of an Unstructured Mesh CF Application. In Proceedings of SC2000, 2000. 287

    Google Scholar 

  6. R. Rabenseifner, Communication Bandwidth of Parallel Programming Models on Hybrid Architectures. To be published in the proceedings of WOMPEI 2002, Kansai Science City, Japan. LNCS 2327. 287

    Google Scholar 

  7. J. Dongarra et al., Iterative Solver Benchmark, available at http://www.netlib.org/benchmark/sparsebench/. 287, 289

  8. R. Barrett et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia (1994). 288

    Google Scholar 

  9. M. Kinateder et al., E. Krause and W. Jäger, eds.: High Performance Computing in Science and Engineering 2000, Springer, Berlin (2001), pp. 188–204. 288, 289

    Google Scholar 

  10. W. Schönauer, Architecture and Use of Shared and Distributed Memory Parallel Computers, eds.: W. Schönauer, ISBN 3-00-005484-7. 296

    Google Scholar 

  11. P.W. Anderson, Phys. Rev. B 109, 1492 (1958). 293

    Article  Google Scholar 

  12. G. Wellein et al., Exact Diagonalization of Large Sparse Matrices: A Challenge for Modern Supercomputers, In Proceedings of CUG SUMMIT 2001, CD-ROM. 297

    Google Scholar 

  13. M. Brehm, LRZ Munich, private communication. 297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wellein, G., Hager, G., Basermann, A., Fehske, H. (2003). Fast Sparse Matrix-Vector Multiplication for TeraFlop/s Computers. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds) High Performance Computing for Computational Science — VECPAR 2002. VECPAR 2002. Lecture Notes in Computer Science, vol 2565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36569-9_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-36569-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00852-1

  • Online ISBN: 978-3-540-36569-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics