Abstract
Undecidability results of cellular automata properties usually concern one time step or long time behavior of cellular automata. Intrinsic universality is a dynamical property of another kind. We prove the undecidability of this property for one-dimensional cellular automata. The construction used in this proof may be extended to other properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Albert and K. Čulik II, A simple universal cellular automaton and its one-way and totalistic version, Complex Systems, 1(1987), no. 1, 1–16.
S. Amoroso and Y. N. Patt, Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures, J. Comput. System Sci., 6(1972), 448–464.
E. R. Banks, Universality in cellular automata, in Conference Record of 1970 Eleventh Annual Symposium on Switching and Automata Theory, pages 194–215, IEEE, 1970.
K. Čulik II, J. K. Pachl, and S. Yu, On the limit sets of cellular automata,SIAM J. Comput., 18(1989), no. 4, 831–842.
J. Kari, The nilpotency problem of one-dimensional cellular automata, SIAM J. Comput., 21(1992), 571–586.
J. Kari, Reversibility and surjectivity problems of cellular automata, J. Comput. System Sci., 48(1994), 149–182.
J. Kari, Rice’s theorem for the limit sets of cellular automata, Theoretical Computer Science, 127(1994), no. 2, 229–254.
J. Mazoyer and I. Rapaport, Global fixed point attractors of circular cellular automata and periodic tilings of the plane: undecidability results, Discrete Math., 199(1999), 103–122.
J. Mazoyer and I. Rapaport, Inducing an order on cellular automata by a grouping operation, Discrete Appl. Math., 218(1999), 177–196.
N. Ollinger, Toward an algorithmic classification of cellular automata dynamics, 2001, LIP RR2001-10, http://www.ens-lyon.fr/LIP.
N. Ollinger, The quest for small universal cellular automata, in P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, and R. Conejo, editors, Automata, languages and programming (Málaga, Spain, 2002), volume 2380 of Lecture Notes in Computer Science, pages 318–329, Springer, Berlin, 2002.
R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math., 12(1971), 177–209.
K. Sutner, Classifying circular cellular automata, Physica D, 45(1990), 386–395.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ollinger, N. (2003). The Intrinsic Universality Problem of One-Dimensional Cellular Automata. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_55
Download citation
DOI: https://doi.org/10.1007/3-540-36494-3_55
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00623-7
Online ISBN: 978-3-540-36494-8
eBook Packages: Springer Book Archive