Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Complexity of Membership Problems for Circuits over Sets of Natural Numbers

  • Conference paper
  • First Online:
STACS 2003 (STACS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Included in the following conference series:

Abstract

The problem of testing membership in the subset of the natural numbers produced at the output gate of a ∪, ∩,- ,+, * combinational circuit is shown to capture a wide range of complexity classes. Although the general problem remains open, the case ∪, ∩,+, * is shown NEXPTIME-complete, the cases ∪, ∩,- , *, ∪, ∩, *, ∪, ∩,+ are shown PSPACE-complete, the case ∪,+ is shown NP-complete, the case ∩,+ is shown C=L-complete, and several other cases are resolved. Interesting auxiliary problems are used, such as testing nonemptyness for union-intersection-concatenation circuits, and expressing each integer, drawn from a set given as input, as powers of relatively prime integers of one’s choosing. Our results extend in nontrivial ways past work by Stockmeyer and Meyer (1973), Wagner (1984) and Yang (2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Agrawal, E. Allender, and S. Datta, On TC0, AC0, and arithmetic circuits, J. Computer and System Sciences 60 (2000), pp. 395–421.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Allender, Making computation count: Arithmetic circuits in the Nineties, in the Complexity Theory Column, SIGACT NEWS 28 (4) (1997) pp. 2–15.

    Article  Google Scholar 

  3. E. Allender, K. Reinhardt, S. Zhou, Isolation, matching, and counting: Uniform and nonuniform upper bounds, J. Computer and System Sciences 59(1999), pp. 164–181.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Allender, D. Barrington, and W. Hesse, Uniform constant-depth threshold circuits for division and iterated multiplication, Proceedings 16th Conference on Computational Complexity, 2001, pp. 150–159.

    Google Scholar 

  5. E. Allender, J. Jiao, M. Mahajan and V. Vinay, Non-commutative arithmetic circuits: depth-reduction and depth lower bounds, Theoretical Computer Science Vol. 209 (1/2,2) (1998), pp. 47–86.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Bach, J. Shallit, Algorithmic Number Theory, Volume I: Efficient Algorithms, MIT Press 1996.

    Google Scholar 

  7. M. Beaudry and P. McKenzie, Circuits, matrices and nonassociative computation, J. Computer and System Sciences 50 (1995), pp. 441–455.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Beaudry, P. McKenzie, P. Péladeau, D. Thérien, Finite monoids: from word to circuit evaluation, SIAM J. Computing 26 (1997), pp. 138–152.

    Article  MATH  Google Scholar 

  9. S. Buss, S. Cook, A. Gupta, V. Ramachandran, An optimal parallel algorithm for formula evaluation, SIAM J. Computing 21 (1992), pp. 755–780.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. R. Buss, The boolean formula value problemis in ALOGTIME, Proceedings 19th ACM Symp, on the Theory of Computing, 1987, pp. 123–131.

    Google Scholar 

  11. H. Caussinus, P. McKenzie, D. Thérien, H. Vollmer, Nondeterministic NC1 computation, J. Computer and System Sciences, 57 (2), 1998, pp. 200–212.

    Article  MATH  Google Scholar 

  12. A. K. Chandra, L. Stockmeyer, U. Vishkin, Constant depth reducibility, SIAM Journal on Computing, 13, 1984, pp. 423–439.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Chiu, G. Davida, and B. Litow, NC 1 division, available at http://www.cs.jcu.edu.au/ bruce/papers/cr00 3.ps.gz

  14. L. M. Goldschlager, The monotone and planar circuit value problems are logspace complete for P, SIGACT News, 9, 1977, pp. 25–29.

    Article  Google Scholar 

  15. W. Hesse, Division in uniform TC0, Proceedings of the 28th International Colloquium on Automata, Languages, and Programming 2001, Lecture Notes in Computer Science 2076, pp. 104–114

    Google Scholar 

  16. J. von zur Gathen, Parallel algorithms for algebraic problems, SIAM J. on Computing 13(4), (1984), pp. 802–824.

    Google Scholar 

  17. R. Greenlaw, J. Hoover and L. Ruzzo, Limits to parallel computation, P-completeness theory, Oxford University Press, 1995, 311 pages.

    Google Scholar 

  18. M. Ogihara, The PL hierarchy collapses, SIAM Journal of Computing, 27, 1998, pp. 1430–1437.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. J. Stockmeyer, A. R. Meyer, Word Problems Requiring Exponential Time, Proceedings 5th ACM Symposium on the Theory of Computing, 1973, pp. 1–9.

    Google Scholar 

  20. H. Vollmer, Circuit complexity, Springer, 2000.

    Google Scholar 

  21. K. W. Wagner, The complexity of problems concerning graphs with regularities, Proceedings 11th Mathematical Foundations of Computer Science 1984, Lecture Notes in Computer Science 176, pp. 544–552. Full version as TR N/84/52, Friedrich-Schiller-Universität Jena, 1984.

    MATH  Google Scholar 

  22. K. Yang, Integer circuit evaluation is PSPACE-complete, Proceedings 15th Conference on Computational Complexity, 2000, pp. 204–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McKenzie, P., Wagner, K.W. (2003). The Complexity of Membership Problems for Circuits over Sets of Natural Numbers. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics