Nothing Special   »   [go: up one dir, main page]

Skip to main content

ACO Algorithm for MKP Using Various Heuristic Information

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2542))

Included in the following conference series:

Abstract

The ant colony optimization (ACO) algorithms are being applied successfully to diverse heavily constrained problems: traveling salesman problem, quadratic assignment problem. Early applications of ACO algorithms have been mainly concerned with solving ordering problems. In this paper, the principles of the ACO algorithm are applied to the multiple knapsack problem (MKP). In the first part of the paper we explain the basic principles of ACO algorithm. In the second part of the paper we propose different types of heuristic information and we compare the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multiple knapsack problem. Journal of Heuristics, 4 (1998) 63–86.

    Article  MATH  Google Scholar 

  2. Dorigo, M., Di Caro, G.: The ant colony optimization metaheuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.): New Idea in Optimization, McGrow-Hill (1999) 11–32.

    Google Scholar 

  3. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1 (1999) 53–66.

    Article  Google Scholar 

  4. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for distributed discret optimization. Artificial Life, 5 (1999) 137–172.

    Article  Google Scholar 

  5. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Transaction on Systems, Man. and Cibernetics-Part B, 26 (1996) 29–41

    Article  Google Scholar 

  6. Fogel, B.: Evolutionary computation: Toward a new philosophy of machine intelligence. IEEE Press, New York (1994)

    Google Scholar 

  7. Gambardella, M.L., Taillard, E.D., Agazzi, G.: A multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization, McGraw-Hill (1999) 63–76.

    Google Scholar 

  8. Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the QAP. J. of Oper. Res. Soc. 50 (1999) 167–176.

    MATH  Google Scholar 

  9. Glover, F.: Tabu search. ORSA J. of Comput. 1 (1989)

    Google Scholar 

  10. Kirkpatrick, S., Gelatt, C.D., Vechi, M.P.: Optimization by simulated annealing. Scienece, 220 (1983) 671–680.

    Article  Google Scholar 

  11. Kochenberger, G., McCarl, G., Wymann, F.: A heuristic for general integer programming. Decision Sciences, 5 (1974) 36–44.

    Article  Google Scholar 

  12. Leguizamon, G., Michalevich, Z.: A new version of the ant system for subset problems. In: Proceedings of Int. Conf. on Evolutionary Computations, Washington (1999)

    Google Scholar 

  13. Michel, R., Middendorf, M.: An island based ant system with lookahead for the shortest common super-sequence problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H-P. (eds.): Proceedings of the Fifth International Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Vol. 1498 (1998) 692–708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fidanova, S. (2003). ACO Algorithm for MKP Using Various Heuristic Information. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds) Numerical Methods and Applications. NMA 2002. Lecture Notes in Computer Science, vol 2542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36487-0_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-36487-0_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00608-4

  • Online ISBN: 978-3-540-36487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics