Summary
We discuss classifiers [3] for complex concepts constructed from data sets and domain knowledge using approximate reasoning schemes (AR schemes). The approach is based on granular computing methods developed using rough set and rough mereological approaches [9, 13, 7]. In experiments we use a road simulator (see [15]) making it possible to collect data, e.g., on vehicle-agents movement on the road, at the crossroads, and data from different sensor-agents. We compare the quality of two classifiers: the standard rough set classifier based on the set of minimal decision rules and the classifier based on AR schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazan J. (1998) A comparison of dynamic non-dynamic rough set methods for extracting laws from decision tables. In: Skowron A. (eds) Rough Sets in Knowledge Discovery 1–2, Physica-Verlag, Heidelberg [8]: 321–365
Bazan J., Nguyen H. S., Skowron A., Szczuka M. (2003) A view on rough set concept approximation. LNAI 2639, Springer, Heidelberg: 181–188
Friedman J. H., Hastie T., Tibshirani R. (2001) The elements of statistical learning: Data mining, inference, and prediction. Springer, Heidelberg.
Kloesgen W., & Żytkow J. (eds) (2002) Handbook of KDD. Oxford University Press
Michie D., Spiegelhalter D.J., Taylor, C.C. (1994) Machine learning, neural and statistical classification. Ellis Horwood, New York
Pawlak Z (1991) Rough sets: Theoretical aspects of reasoning about data. Kluwer, Dordrecht.
Pal S. K., Polkowski L., Skowron A. (eds) (2004) Rough-Neuro Computing: Techniques for Computing with Words. Springer-Verlag, Berlin.
Polkowski L., Skowron A. (eds) (1998) Rough Sets in Knowledge Discovery 1–2, Physica-Verlag, Heidelberg.
Polkowski L., Skowron, A. (1999) Towards adaptive calculus of granules. In: Kacprzyk J. (eds.) Computing with Words in Information/Intelligent Systems 1–2. Physica-Verlag, Heidelberg [17]: 201–227
Polkowski L., Skowron A. (2000) Rough mereology in information systems. A case study: Qualitative spatial reasoning. In: Polkowski L., Lin T. Y., Tsumoto S. (eds), Rough Sets: New Developmentsin Knowledge Discovery in Information Systems, Studies in Fuzziness and Soft Computing 56, Physica-Verlag, Heidelberg: 89–135
Skowron, A. (2001) Toward intelligent systems: Calculi of information granules. Bulletin of the International Rough Set Society 5(1–2): 9–30
Skowron A., Stepaniuk J. (2001) Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16(1): 57–86
Skowron A., Stepaniuk J. (2002) Information granules and roughneuro computing. In Polkowski L., Skowron A. (eds) Rough-Neuro Computing: Techniques for Computing with Words. Springer-Verlag, Berlin [7]: 43–84
Stone P. (2000) Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge, MA
The Road simulator Homepage — logic.mimuw.edu.pl/∼bazan/simulator
The RSES Homepage — logic.mimuw.edu.pl/∼rses
Zadeh L. A., Kacprzyk J. (eds.) (1999) Computing with Words in Information/Intelligent Systems 1–2. Physica-Verlag, Heidelberg
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazan, J., Skowron, A. (2005). Classifiers Based on Approximate Reasoning Schemes. In: Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32370-8_13
Download citation
DOI: https://doi.org/10.1007/3-540-32370-8_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23245-2
Online ISBN: 978-3-540-32370-9
eBook Packages: EngineeringEngineering (R0)