Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 28))

Summary

We discuss classifiers [3] for complex concepts constructed from data sets and domain knowledge using approximate reasoning schemes (AR schemes). The approach is based on granular computing methods developed using rough set and rough mereological approaches [9, 13, 7]. In experiments we use a road simulator (see [15]) making it possible to collect data, e.g., on vehicle-agents movement on the road, at the crossroads, and data from different sensor-agents. We compare the quality of two classifiers: the standard rough set classifier based on the set of minimal decision rules and the classifier based on AR schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazan J. (1998) A comparison of dynamic non-dynamic rough set methods for extracting laws from decision tables. In: Skowron A. (eds) Rough Sets in Knowledge Discovery 1–2, Physica-Verlag, Heidelberg [8]: 321–365

    Google Scholar 

  2. Bazan J., Nguyen H. S., Skowron A., Szczuka M. (2003) A view on rough set concept approximation. LNAI 2639, Springer, Heidelberg: 181–188

    Google Scholar 

  3. Friedman J. H., Hastie T., Tibshirani R. (2001) The elements of statistical learning: Data mining, inference, and prediction. Springer, Heidelberg.

    Google Scholar 

  4. Kloesgen W., & Żytkow J. (eds) (2002) Handbook of KDD. Oxford University Press

    Google Scholar 

  5. Michie D., Spiegelhalter D.J., Taylor, C.C. (1994) Machine learning, neural and statistical classification. Ellis Horwood, New York

    MATH  Google Scholar 

  6. Pawlak Z (1991) Rough sets: Theoretical aspects of reasoning about data. Kluwer, Dordrecht.

    Google Scholar 

  7. Pal S. K., Polkowski L., Skowron A. (eds) (2004) Rough-Neuro Computing: Techniques for Computing with Words. Springer-Verlag, Berlin.

    Google Scholar 

  8. Polkowski L., Skowron A. (eds) (1998) Rough Sets in Knowledge Discovery 1–2, Physica-Verlag, Heidelberg.

    Google Scholar 

  9. Polkowski L., Skowron, A. (1999) Towards adaptive calculus of granules. In: Kacprzyk J. (eds.) Computing with Words in Information/Intelligent Systems 1–2. Physica-Verlag, Heidelberg [17]: 201–227

    Google Scholar 

  10. Polkowski L., Skowron A. (2000) Rough mereology in information systems. A case study: Qualitative spatial reasoning. In: Polkowski L., Lin T. Y., Tsumoto S. (eds), Rough Sets: New Developmentsin Knowledge Discovery in Information Systems, Studies in Fuzziness and Soft Computing 56, Physica-Verlag, Heidelberg: 89–135

    Google Scholar 

  11. Skowron, A. (2001) Toward intelligent systems: Calculi of information granules. Bulletin of the International Rough Set Society 5(1–2): 9–30

    Google Scholar 

  12. Skowron A., Stepaniuk J. (2001) Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16(1): 57–86

    Article  MATH  Google Scholar 

  13. Skowron A., Stepaniuk J. (2002) Information granules and roughneuro computing. In Polkowski L., Skowron A. (eds) Rough-Neuro Computing: Techniques for Computing with Words. Springer-Verlag, Berlin [7]: 43–84

    Google Scholar 

  14. Stone P. (2000) Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge, MA

    Google Scholar 

  15. The Road simulator Homepage — logic.mimuw.edu.pl/∼bazan/simulator

    Google Scholar 

  16. The RSES Homepage — logic.mimuw.edu.pl/∼rses

    Google Scholar 

  17. Zadeh L. A., Kacprzyk J. (eds.) (1999) Computing with Words in Information/Intelligent Systems 1–2. Physica-Verlag, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazan, J., Skowron, A. (2005). Classifiers Based on Approximate Reasoning Schemes. In: Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32370-8_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-32370-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23245-2

  • Online ISBN: 978-3-540-32370-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics