Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Median filters for scalar-valued data are well-known tools for image denoising and analysis. They preserve discontinuities and are robust under noise. We generalise median filtering to matrix-valued data using a minimisation approach. Experiments on DT-MRI and fluid dynamics tensor data demonstrate that tensor-valued median filtering shares important properties of its scalar-valued counterpart, including the robustness as well as the existence of non-trivial steady states (root signals).

A straightforward extension of the definition allows the introduction of matrix-valued mid-range filters and, more general, M-smoothers. Mid-range filters can also serve as a building block in constructing further (e.g. supremum-based) tensor image filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Astola, J., Haavisto, P., Neuvo, Y. (1990) Vector median filters. Proceedings of the IEEE 78(4), 678–689

    Article  Google Scholar 

  2. Austin, T. L., Jr. (1959) An approximation to the point of minimum aggregate distance. Metron 19, 10–21

    MathSciNet  MATH  Google Scholar 

  3. Barnett, V. (1976) The ordering of multivariate data. Journal of the Royal Statistical Society A, 139(3), 318–355

    Article  Google Scholar 

  4. Barral Souto, J. (1938) El modo y otras medias, casos particulares de una misma expresión matemática. Cuadernos de Trabajo No. 3, Instituto de Biometria, Universidad Nacional de Buenos Aires, Argentina

    Google Scholar 

  5. Brox, T., Weickert, J. (2002) Nonlinear matrix diffusion for optic flow estimation. In: Van Gool, L. (Ed.) Pattern Recognition. Lecture Notes in Computer Science, Vol. 2449, Springer, Berlin, 446–453

    Chapter  Google Scholar 

  6. Coulon, O., Alexander, D. C., Arridge, S. A. (2001) A regularization scheme for diffusion tensor magnetic resonance images. In: Insana, M. F., Leahy, R. M. (Eds.) Information Processing in Medical Imaging — IPMI 2001. Lecture Notes in Computer Science, Vol. 2082, Springer, Berlin, 92–105

    Chapter  Google Scholar 

  7. Dougherty, E. R., Astola, J. (Eds.) (1999) Nonlinear Filters for Image Processing. SPIE Press, Bellingham

    MATH  Google Scholar 

  8. Guichard, F., Morel, J.-M. (1997) Partial differential equations and image iterative filtering. In: Duff, I. S., Watson, G. A. (Eds.) The State of the Art in Numerical Analysis, no. 63 IMA Conference Series (New Series), Clarendon Press, Oxford, 525–562

    Google Scholar 

  9. Hahn, K., Pigarin, S., Pütz, B. (2001) Edge preserving regularization and tracking for diffusion tensor imaging. In: Niessen, W. J., Viergever, M. A. (Eds.) Medical Image Computing and Computer-Assisted Intervention — MICCAI 2001. Lecture Notes in Computer Science, Vol. 2208, Springer, Berlin, 195–203

    Chapter  Google Scholar 

  10. Klette, R., Zamperoni, R. (1996) Handbook of Image Processing Operators. Wiley, New York

    Google Scholar 

  11. Koschan, A., Abidi, M. (2001) A comparison of median filter techniques for noise removal in color images. In: Proc. Seventh German Workshop on Color Image Processing, Erlangen, Germany, 69–79

    Google Scholar 

  12. Parker, G. J. M., Schnabel, J. A., Symms, M. R., Werring, D. J., Barker, G. J. (2000) Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging. Journal of Magnetic Resonance Imaging 11, 702–710

    Article  Google Scholar 

  13. Poupon, C., Mangin, J., Frouin, V., Régis, J., Poupon, F., Pachot-Clouard, M., Le Bihan, D., Bloch, I. (1998) Regularization of MR diffusion tensor maps for tracking brain white matter bundles. In: Wells, W. M., Colchester, A., Delp, S. (Eds.) Medical Image Computing and Computer-Assisted Intervention — MICCAI 1998. Lecture Notes in Computer Science, Vol. 1496, Springer, Berlin, 489–498

    Google Scholar 

  14. Torroba, P. L., Cap, N. L., Rabal, H. J., Furlan, W. D. (1994) Fractional order mean in image processing. Optical Engineering 33(2), 528–534

    Article  Google Scholar 

  15. Tschumperlé, D., Deriche, R. (2001) Diffusion tensor regularization with constraints preservation. In: Proc. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, Kauai, HI, Dec. 2001. IEEE Computer Society Press, 948–953

    Google Scholar 

  16. Tukey, J. W. (1971) Exploratory Data Analysis. Addison-Wesley, Menlo Park

    Google Scholar 

  17. Weickert, J., Brox, T. (2002) Diffusion and regularization of vector-and matrix-valued images. In: Nashed, M. Z., Scherzer, O. (Eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, Vol. 313, AMS, Providence, 251–268

    Google Scholar 

  18. Welk, M., Becker, F., Schnörr, C., Weickert, J. (2005) Matrix-valued filters as convex programs. In Kimmel, R., Sochen, N., Weickert, J. (Eds.) Scale-Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, Springer, Berlin, to appear.

    Google Scholar 

  19. Welk, M., Feddern, C., Burgeth, B., Weickert, J. (2003) Median filtering of tensor-valued images. In: Michaelis, B., Krell, G. (Eds.) Pattern Recognition. Lecture Notes in Computer Science, Vol. 2781, Springer, Berlin, 17–24

    Chapter  Google Scholar 

  20. Westin, C., Maier, S. E., Khidhir, B., Everett, P., Jolesz, F. A., Kikinis, R. (1999) Image processing for diffusion tensor magnetic resonance imaging. In: Taylor, C., Colchester, A. (Eds.) Medical Image Computing and Computer-Assisted Intervention — MICCAI 1999. Lecture Notes in Computer Science, Vol. 1679, Springer, Berlin, 441–452

    Chapter  Google Scholar 

  21. Winkler, G., Aurich, V., Hahn, K., Martin, A. (1999) Noise reduction in images: some recent edge-preserving methods. Pattern Recognition and Image Analysis 9(4), 749–766

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Welk, M., Feddern, C., Burgeth, B., Weickert, J. (2006). Tensor Median Filtering and M-Smoothing. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_21

Download citation

Publish with us

Policies and ethics