Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 33))

Abstract

This paper defends the employment of Evolutive Algorithms (EAs) in action games by showing their virtues for both offline and online opponent controlling. The paper proposes (and also compares) several EAs applied offline in the solving of a classical path finding problem and used to provide intelligence to autonomous agents (e.g., the opponents) in an action computer game. The paper also presents an EA that has been successfully employed in real time (i.e., online) in an action game in which a player controls a military vehicle in a hostile enemy region.

This work has been partially supported by projects TIC2001-2705-C03-02, and TIC2002-04498-C05-02 funded by both the Spanish Ministry of Science and Technology and FEDER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. DeLoura (editor): Game Programming Gems. Editorial Charles River Media, INC., Rockland, Massachussetts (2000)

    Google Scholar 

  2. Lidén, L. In: Artificial Stupidity: The Art of Intentional Mistakes. Charles River Media, INC., Rockland, Massachussetts (2004) 41–48

    Google Scholar 

  3. Johnson, D., Wiles, J.: Computer games with intelligence. Australian Journal of Intelligent Information Processing Systems 7 (2001) 61–68

    Google Scholar 

  4. James, G.: Using genetic algorithms for game AI. GIGnews.com (2004) http://www.gignews.com/gregjames1.htm.

    Google Scholar 

  5. Wong, T., Wong, H.: Genetic algorithms. Internet (1996) http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/tcw2/article1.html.

    Google Scholar 

  6. Buckland, M.: AI Techniques for Game Programming. Premier Press (2002)

    Google Scholar 

  7. Sweetser, P.: AI in games: A review. Available at http://www.itee.uq.edu.au/~penny/publications.htm (2002)

    Google Scholar 

  8. Woodcock, S.: Game AI: The state of the industry. (August, 1999, http://www.gamasutra.com/features/19990820/game_ai.htm)

    Google Scholar 

  9. Rabin, S. In: Promising Game AI Techniques. Charles River Media, INC., Rockland, Massachussetts (2004) 15–28

    Google Scholar 

  10. Buckland, M. In: Building better genetic algorithms. Charles River Media, INC., Rockland, Massachussetts (2004) 649–660

    Google Scholar 

  11. Sweetser, P. In: How to build evolutionary algorithms for games. Charles River Media, INC., Rockland, Massachussetts (2003) 627–638

    Google Scholar 

  12. Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.: Improving opponent intelligence through offline evolutionary learning. International Journal of Intelligent Games & Simulation 2 (2003) 20–27

    Google Scholar 

  13. Dalgaard, J., Holm, J.: Genetic programming applied to a real time game domain. Master thesis, Aalborg University-Institute of Computer Science, Denmark (2002)

    Google Scholar 

  14. Alife Games: (http://alifegames.sourceforge.net/bSerene/index.html)

    Google Scholar 

  15. Sweetser, P.: (http://www.itee.uq.edu.au/~penny/commercial_AI.htm)

    Google Scholar 

  16. van Waveren, J., Rothkrantz, J.: Artificial player for Quake III arena. International Journal of Intelligent Games & Simulation 1 (2003) 25–32

    Google Scholar 

  17. Demasi, P., de O Cruz, A.: Online coevolution for action games. International Journal of Intelligent Games & Simulation 2 (2003) 80–88

    Google Scholar 

  18. Game, A.C.: (http://tracer.lcc.uma.es/problems/index.html, 2002)

    Google Scholar 

  19. Eiben, A., Schoenauer, M.: Evolutionary computing. Information Processing Letters 82 (2002) 1–6

    Article  MATH  MathSciNet  Google Scholar 

  20. Cotta, C., Troya, J.: Using a hybrid evolutionary-a* approach for learning reactive behaviours. In et al., S.C., ed.: Evo Workshops. Number 1803 in LNCS, Edinburgh, Scotland, Springer (2000) 347–356

    Google Scholar 

  21. Smed, J., kaukoranta, T., Hakonen, H.: Networking and multiplayer computer games-the story so far. International Journal of Intelligent Games & Simulation 2 (2003) 101–110

    Google Scholar 

  22. Mencher, M.: The future of game development: new skilss and new attitudes. GIGnews.com (2004) http://www.gignews.com/gregjames1.htm.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, A.J., González, J.J. (2005). Action Games: Evolutive Experiences. In: Reusch, B. (eds) Computational Intelligence, Theory and Applications. Advances in Soft Computing, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31182-3_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-31182-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22807-3

  • Online ISBN: 978-3-540-31182-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics