Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Near-Body Domain Decomposition Using the Eikonal Equation

  • Conference paper
Proceedings of the 14th International Meshing Roundtable

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bergman, “Development of numerical techniques for inviscid hypersonic flows around re-entry vehicles,” PhD thesis, INP Toulouse, 1990.

    Google Scholar 

  2. J. Cordova, “Towards a theory of automated elliptic mesh generation,” In NASA Workshop on Software Systems for Surface Modeling and Grid Generation, NASA Conference Publication, n 3143, p231, 1992.

    Google Scholar 

  3. T. Schonfeld and P. Weinerfelt, “The automatic generation of quadrilateral multi-block grids by the advancing front technique,” In Numerical Grid Generatin in Computational Fluid Dynamics, A.S. Arcilla, J. Hauser, P.R. Eiseman, and J.F. Thompson (Eds.), p743, Proceedings of the 3rd International Grid Conference, North Holland, Barcelona, Spain, June, 1991.

    Google Scholar 

  4. B. Kim and S. Eberhardt, “Automatic multi-block grid generation for high-lift configuration wings,” Proceedings of the Surface Modeling, Grid Generation and Related Issues in Computational Fluid Dynamics Workshop, NASA Conference Publication 3291, p. 671, NASA Lewis Research Center, Cleveland, OH, May, 1995.

    Google Scholar 

  5. P. Piperni and R. Camarero, “A fundamental solution to the problem of domain decomposition in structued grid generation,” AIAA 2003-0951, 41st Aerospace Sciences Meeting & Exhibit, 6–9 January, 2003.

    Google Scholar 

  6. S. Park and K. Lee, “Automatic multiblock decomposition using hypercube++ for grid generation,” Computers and Fluids, 27,4,May, p509–528, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Guibault, Un mailleur hybride structuré /non structuré en trois dimensions. PhD thesis, École Polytechnique de Montréal, 1998.

    Google Scholar 

  8. R. G. V. V. Kumar, K. G. Shastry, and B. G. Prakash, “Computing offsets of trimmed nurbs surfaces,” Comp.-Aided Design, vol. 35, no. 5, pp. 411–420, 2003.

    Article  Google Scholar 

  9. S. Park and B. Choi, “Uncut free pocketing tool-paths generation using pair-wise offset algorithm,” Comp.-Aided Design, vol. 33, no. 10, pp. 739–746, 2001.

    Article  Google Scholar 

  10. S. Pirzadeh, “Unstructured viscous grid generation by advancing-layers method,” in AIAA 11th Applied Aerodynamics Conference, no. AIAA-93-3453, (Monterey, CA), pp. 420–434, Aug. August 9-11, 1993.

    Google Scholar 

  11. J. Suillivan and J. Zhang, “Adaptive mesh generation using a normal offsetting technique,” Finite Elements in Analysis and Design, vol. 25, pp. 275–295, 1997.

    Article  Google Scholar 

  12. J. Glimm, J. Grove, X. Li, and D. Tan, “Robust computational algorithms for dynamic interface tracking in three dimensions,” SIAM J. Sci. Comp., vol. 21, no. 6, pp. 2240–2256, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Blomgren, “B-spline curves, boeing document, class notes, b-7150-bb-wp-2811d-4412,” 1981.

    Google Scholar 

  14. W. Tiller and E. Hanson, “Offsets of two-dimensional profiles,” IEEE Computer Graphics and Applications, vol. 4, no. 9, pp. 36–46, 1984.

    Article  Google Scholar 

  15. S. Coquillart, “Computing offsets of b-spline curves,” Comp.-Aided Design, vol. 19, no. 6, pp. 305–309, 1987.

    Article  MATH  Google Scholar 

  16. A. Kulczycka and L. Nachman, “Qualitative and quantitative comparisons of b-spline offset surface approximation methods,” Comp.-Aided Design, vol. 34, pp. 19–26, Jan. 2002.

    Article  Google Scholar 

  17. L. A. Piegl and W. Tiller, “Computing offsets of nurbs curves and surfaces,” Comp.-Aided Design, vol. 31, pp. 147–156, Feb. 1999.

    Article  MATH  Google Scholar 

  18. Y. F. Sun, A. Y. C. M. Nee, and K. S. Lee, “Modifying free-formed nurbs curves and surfaces for offsetting without local self-intersection,” Comp.-Aided Design, vol. 36, no. 12, pp. 1161–1169, 2004.

    Article  Google Scholar 

  19. R. T. Farouki, “The approximation of non-degenerate offset surfaces,” Comp.-Aided Geom. Design, vol. 3, no. 1, pp. 15–43, 1986.

    Article  MATH  Google Scholar 

  20. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations,” J. Comp. Phys., vol. 79, pp. 12–49, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 4, pp. 1591–1595, 1996.

    MATH  MathSciNet  Google Scholar 

  22. J. A. Sethian, Level set methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1999.

    Google Scholar 

  23. R. Kimmel and A. M. Bruckstein, “Shape offsets via level sets,” Comp.-Aided Design, vol. 25, no. 3, pp. 154–162, 1993.

    Article  MATH  Google Scholar 

  24. R. Malladi and J. A. Sethian, “Level set and fast marching methods in image processing and computer vision,” IEEE International Conference on Image Processing, vol. 1, pp. 489–492, 1996.

    Google Scholar 

  25. A. Sheffer and E. de Sturler, “Parameterization of faceted surfaces for meshing using angle based flattening,” Engineering with Computers, vol. 17, no. 3, pp. 326–337, 2001.

    Article  MATH  Google Scholar 

  26. K. Hormann, Theory and Applications of Parameterizing Triangulations. PhD thesis, Department of Computer Science, University of Erlangen, Nov. 2001.

    Google Scholar 

  27. H. K. Zhao, “A fast sweeping method for eikonal equations,” Mathematics of Computation, vol. 74, no. 250, pp. 603–627, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. A. Sethian, “Fast marching methods,” SIAM Review, vol. 41, no. 2, pp. 199–235, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  29. Y.-L. Wang, F. Guibault, R. Camarero, and K.-F. Tchon, “A parametrization transporting surface offset construction method based on the eikonal equation,” in 17th AIAA Computational Fluid Dynamics Conference, 6–9 June 2005.

    Google Scholar 

  30. E. Rouy and A. Tourin, “A viscosity solution approach to shape-from-shading,” SIAM Journal on Numerical Analysis, vol. 29, pp. 867–884, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Bonet and J. Peraire, “An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems,” Int. J. Numer. Meth. Engng, vol. 31, pp. 1–17, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Hoffman, Numerical Methods for Engineers and Scientists. McGraw-Hill Inc., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Guibault, F., Camarero, R. (2005). Automatic Near-Body Domain Decomposition Using the Eikonal Equation. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics