Abstract
This paper presents an approach for a semantically correct integration of a 2.5D digital terrain model (DTM) and a 2D topographic GIS data set. The algorithm is based on a constrained Delaunay triangulation. The polygons of the topographic objects are first integrated without considering the semantics of the object. Then, those objects which contain implicit height information are dealt with. Object representations are formulated, the object semantics are considered within an optimization process using equality and inequality constraints. First results are presented using simulated and real data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fritsch, D., 1985. Some Additional Information on the Capacity of the Linear Complementary Algorithm, in: E. Grafarend & F. Sanso, Eds., “Optimization and Design of Geodetic Networks”, Springer, Berlin, pp. 169–184.
Fritsch, D., Pfannenstein, A., 1992. Comceptual Models for Efficient DTM Integration into GIS. Proceedings EGIS’92. Third European Conference and Exhibition on Geographical Information Systems. Munich, Germany, pp. 701–710.
Hettwer, J., 2003. Numerische Methoden zur Homogenisierung großer Geodatenbestände. Publication of the Geodetic Institute of the Rheinisch-Westfälischen Technischen Hochschule Aachen. PhD Thesis, Aachen, Germany.
Klötzer, F., 1997. Integration von triangulierten digitalen Geländemodellen und Landkarten. Diploma thesis of the Institute of Informatics, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany, unpublished.
Koch, A., 2003. Semantically correct integration of a digital terrain model and a 2D topographic vector data set, Proceedings of ISPRS workshop on challenges in geospatial analysis, integration and visualization II, Stuttgart, 8–10 September, CD.
Lawson, C. L., Hanson, R. J., 1995. Solving Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia.
Lee, D.-T., Lin, A.-K., 1986. Generalized Delaunay triangulations for planer graphs. Discrete Comput. Geom., 1: 201–217.
Lemke, C. E., 1968. On complementary pivot theory, in: G. B. Dantzig, A. F. Veinott, Eds., “Mathematics in the Decision Sciences”, Part 1, pp. 95–114.
Lenk, U., 2001. — 2.5D-GIS und Geobasisdaten — Integration von Höheninformation und Digitalen Situationsmodellen, Wiss. Arb. Fachr. Verm. Universität Hannover Nr. 244 and DGK bei der Bayer. Akad. D. Wiss., Reihe C, Nr. 546. Diss., Univ. Hannover.
Pilouk, M., 1996. Integrated Modelling for 3D GIS. PhD Thesis. ITC Publication Series No. 40, Enschede, The Netherlands.
Rousseaux, F., Bonin, O., 2003. Towards a coherent integration of 2D linear data into a DTM. Proceedings of the 21st International Cartographic Conference (ICC). Durban, South Africa, pp. 1936–1942.
Schaffrin, B., 1981. Ausgleichung mit Bedingungs-Ungleichungen. AVN, 6, pp. 227–238.
Scholz, T., 1992. Zur Kartenhomogenisierung mit Hilfe strenger Ausgleichungsmethoden. Publication of the Geodetic Institute of the Rheinisch-Westfälischen Technischen Hochschule Aachen. PhD Thesis, Aachen, Germany.
Weibel, R., 1993. On the Integration of Digital Terrain and Surface Modeling into Geographic Information Systems. Proceedings 11th International Symposium on Computer Assisted Cartography (AUTOCARTO 11). Minneapolis, Minnesota, USA, pp. 257–266.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Koch, A., Heipke, C. (2005). Semantically Correct 2.5D GIS Data — the Integration of a DTM and Topographic Vector Data. In: Developments in Spatial Data Handling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26772-7_39
Download citation
DOI: https://doi.org/10.1007/3-540-26772-7_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22610-9
Online ISBN: 978-3-540-26772-0
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)