Nothing Special   »   [go: up one dir, main page]

Skip to main content

Groebner bases for non-commutative polynomial rings

  • Conference paper
  • First Online:
Algebraic Algorithms and Error-Correcting Codes (AAECC 1985)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 229))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.APEL,W.LASSNER An algorithm for calculations in enveloping fields of Lie Algebras, Proc.of the Conf. on Computer Algebra,Dubna (1985)

    Google Scholar 

  2. G.M. BERGMAN The diamond lemma in ring theory, Adv.Math.29(1978),178–218

    Google Scholar 

  3. B.BUCHBERGER Dissertation,Univ.Innsbruck,1965

    Google Scholar 

  4. B.BUCHBERGER Gröbner bases: an algorithmic method in polynomial ideal theory, in N.K.BOSE Ed. Recent trends in multidimensional system theory, Reidel (1985)

    Google Scholar 

  5. B. BUCHBERGER A criterion for detecting unnecessary reductions in the construction of Gröbner bases, Proc.EUROSAM 79, L.N.Comp.Sci. 72 (1979),3–21

    Google Scholar 

  6. A.GALLIGO Some algorithmic questions on ideals of differential operators, Proc. EUROCAL 85, L.N.Comp.Sci.

    Google Scholar 

  7. H. HIRONAKA Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math. 79 (1964),109–326

    Google Scholar 

  8. D. LAZARD Gröbner bases,Gaussian elimination and resolution of systems of algebraic equations, Proc.EUROCAL 83, L.N.Comp.Sci. 162 (1983),146–156

    Google Scholar 

  9. H.M.MOELLER,F.MORA New constructive methods in classical ideal theory, to appear in J.Alg.

    Google Scholar 

  10. L.ROBBIANO On the theory of graded structures, Report of Max-Planck-Institut, Bonn (1984)

    Google Scholar 

  11. F.WINKLER,B.BUCHBERGER A criterion for eliminating unnecessary reductions in the Knuth-Bendix algorithm, Proc.Coll.Algebra,Combinatorics and Logic in Comp. Sci. (1983), to appear in Coll.Math.Soc.J.Bolyai

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mora, F. (1986). Groebner bases for non-commutative polynomial rings. In: Calmet, J. (eds) Algebraic Algorithms and Error-Correcting Codes. AAECC 1985. Lecture Notes in Computer Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16776-5_740

Download citation

  • DOI: https://doi.org/10.1007/3-540-16776-5_740

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16776-1

  • Online ISBN: 978-3-540-39855-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics