Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Weak Key Class of XTEA for a Related-Key Rectangle Attack

  • Conference paper
Progress in Cryptology - VIETCRYPT 2006 (VIETCRYPT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4341))

Included in the following conference series:

Abstract

XTEA is a block cipher with a very simple structure but there has not been found attack even for half of full round version i.e 32-round version. In this paper we introduce a class of weak keys which makes a 34-round reduced version of XTEA vulnerable to the related-key rectangle attack. The number of such weak keys is about 2108.21. Our attack on a 34-round reduced version of XTEA under weak key assumption requires 262 chosen plaintexts and 231.94 34-round XTEA encryptions.

This research was supported by the MIC(Ministry of Information and Communication), Korea, under the ITRC(Information Technology Research Center) support program supervised by the IITA(Institute of Information Technology Advancement)(IITA-2006-(C1090-0603-0025)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)

    Google Scholar 

  2. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. In: GI-Fachtagung 1974, vol. 7, pp. 229–246. Springer, Heidelberg (1994)

    Google Scholar 

  3. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 413–428. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-Way, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 203–207. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-key Rectangle Attack Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.: Related Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible Differential Cryptanalysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Needham, R.M., Wheeler, D.J.: eXtended Tiny Encryption Algorithm (October 1997), Available on: http://vader.brad.ac.uk/tea/tea.shtml

  14. Wheeler, D., Needham, R.: TEA, a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 97–110. Springer, Heidelberg (1995)

    Google Scholar 

  15. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, E., Hong, D., Chang, D., Hong, S., Lim, J. (2006). A Weak Key Class of XTEA for a Related-Key Rectangle Attack. In: Nguyen, P.Q. (eds) Progress in Cryptology - VIETCRYPT 2006. VIETCRYPT 2006. Lecture Notes in Computer Science, vol 4341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11958239_19

Download citation

  • DOI: https://doi.org/10.1007/11958239_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68799-3

  • Online ISBN: 978-3-540-68800-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics