Abstract
Object recognition technology has matured to a point at which exciting applications are becoming possible. Indeed, industry has created a variety of computer vision products and services from the traditional area of machine inspection to more recent applications such as video surveillance, or face recognition. In this chapter, several representatives from industry present their views on the use of computer vision in industry. Current research conducted in industry is summarized and prospects for future applications and developments in industry are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The NIST humanid evaluation framework (2003), http://www.frvt.org
The TREC video retrieval evaluation (2003), http://www-nlpir.nist.gov/projects/trecvid
The Pascal visual object classes challenge (2005), http://www.pascal-network.org/challenges/VOC
Chan, M., Hoogs, A., Schmiederer, J., Petersen, M.: Detecting rare events in video using semantic primitives with HMM. In: Proc. ICPR, vol. 4, pp. 150–154 (2004)
Chan, M., Hoogs, A., Perera, A., Bhotika, R., Schmiederer, J., Doretto, G.: Joint recognition of complex events and track matching. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)
Fergus, R., Zisserman, A., Perona, P.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003) (2003)
Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1408–1423 (2004)
Gavrila, D.M.: Pedestrian Detection from a Moving Vehicle. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 37–49. Springer, Heidelberg (2000)
Gheissari, N., Sebatian, T.B., Tu, P.H., Rittscher, J., Hartley, R.: A novel approach to person reidentification. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proc.Conference on Very Large Databases (1999)
Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)
Hirano, Y., Kitahama, K., Yoshizawa, S.: Image-based Object Recognition and Dexterous Hand/Arm Motion Planning Using RRTs for Grasping in Cluttered Scene. In: IEEE/RSJ Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, Canada (2005)
Hoiem, D., Sukthankar, R., Schneiderman, H., Huston, L.: Object-based image retrieval using the statistics of images. In: Proc.Computer Vision and Pattern Recognition (2004)
Hoogs, A., Collins, R., Kaucic, R., Mundy, J.: A common set of perceptual observables for grouping, figure-ground discrimination and texture classification. T. PAMI 25, 458–475 (2003)
Hoogs, A., Rittscher, J., Stein, G., Schmiederer, J.: Video content annotation using visual analysis and large semantic knowledgebase. In: Proc. CVPR. IEEE, Los Alamitos (2003)
Kaucic, R., Perera, A.G.A., Brooksby, G., Kaufhold, J., Hoogs, A.: A unified framework for tracking through occlusions and across sensor gaps. In: Proc. CVPR, pp. 990–997 (2005)
Kaucic, R.A., McCulloch, C.C., Mendonça, P.R.S., Walter, D.J., Avila, R.S., Mundy, J.L.: Model-based detection of lung nodules in CT exams. In: Lemke, H.U., Vannier, M.W., Inamura, K., Farman, A.G., Doi, K., Reiber, J.H.C. (eds.) Computer Assisted Radiology and Surgery, London, UK. International Congress Series, vol. 1256, pp. 990–997. Elsevier, Amsterdam (2003)
Kaufhold, J., Hoogs, A.: Learning to segment images using region-based perceptual features. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE, Los Alamitos (2004)
Ke, Y., Sukthankar, R., Huston, L.: Efficient near-duplicate and sub-image retrieval. In: Proc. ACM Multimedia (2004)
Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Proc. Computer Vision and Pattern Recognition (2004)
Krahnstoever, N., Mendonca, P.: Bayesian autocalibration for surveillance. In: Proc. ICCV. IEEE, Los Alamitos (2005)
Krahnstoever, N., Kelliher, T., Rittscher, J.: Obtaining pareto optimal performance of visual surveillance algorithms. In: Proc. of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2005)
Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA (2005)
Liu, X., Chen, T., Rittscher, J.: Optimal pose for face recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (2004)
Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
McCulloch, C.C., Kaucic, R.A., Mendonça, P.R.S., Walter, D.J., Avila, R.S.: Model-based detection of lung nodules in computed tomography exams. Academic Radiology 11, 258–266 (2004)
Meng, Y., Chang, E., Li, B.: Enhancing DPF for near-replica image recognition. In: Proc. Computer Vision and Pattern Recognition (2003)
Perera, A., Srinivas, C., Hoogs, A., Brooksby, G., Hu, W.: Multi-object tracking through simultaneous long occlusions and split-merge conditions. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)
Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D Object Modeling and Recognition Using Affine-Invariant Patches and Multi-View Spatial Constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), Madison, WI, vol. II, pp. 272–277 (June 2003)
Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proc. IEEE International Conference on Computer Vision (2003)
Rittscher, J., Tu, P., Krahnstoever, N.: Simultaneous estimation of segmentation and shape. In: Proc. CVPR. IEEE, Los Alamitos (2005)
Rittscher, J., Blake, A., Hoogs, A., Stein, G.: Mathematical modeling of animate and intentional motion. Philosophical Transactions of the Royal Society of London: Biological Sciences 358, 475–490 (2003)
Sanson, H.: Video indexing: Myth and reality. In: Fourth International Workshop on Content-Based Multimedia Indexing, Riga, Latvia (2005)
Snoek, C., Worring, M.: Multimodal video indexing: A review of the state-of-the-art. Multimedia Tools and Applications 25, 5–35 (2005)
Stein, G., Rittscher, J., Hoogs, A.: Enabling video annotation using a semantic database extended with visual knowledge. In: Proceedings of the International Conference on Multimedia and Expo. IEEE, Los Alamitos (2003)
Tu, P., Mendonca, P.: Surface reconstruction via helmholtz reciprocity with a single image pair. In: Proc. CVPR (2003)
Tu, P., Rittscher, J., Kelliher, T.: Challenges to Fingerprints (2005)
Tu, P., Hartley, R.: Statistical significance as an aid to system performance evaluation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 366–378. Springer, Heidelberg (2000)
Tu, P., Hartley, R., Allyassin, A., Lorensen, W., Gupta, R., Heier, L.: Face reconstructions using flesh deformation modes. In: International Association for Craniofacial Identification (2000)
Tu, P., Rittscher, J., Kelliher, T.: Site calibration for large indoor scenes. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance. IEEE, Los Alamitos (2003)
Varma, M., Zisserman, A.: Classifying images of materials: Achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)
Veltkamp, R.C., Tanase, M.: Content-based image retrieval systems: A survey. IEEE Image Processing 1, 100–148 (2001)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Int. Conf. on Computer Vision and Patttern Recognition, Hawaii, US, pp. 511–518 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hirano, Y., Garcia, C., Sukthankar, R., Hoogs, A. (2006). Industry and Object Recognition: Applications, Applied Research and Challenges. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_3
Download citation
DOI: https://doi.org/10.1007/11957959_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68794-8
Online ISBN: 978-3-540-68795-5
eBook Packages: Computer ScienceComputer Science (R0)