Nothing Special   »   [go: up one dir, main page]

Skip to main content

PACE: Polygonal Approximation of Thick Digital Curves Using Cellular Envelope

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

  • 1864 Accesses

Abstract

A novel algorithm to derive an approximate cellular envelope of an arbitrarily thick digital curve on a 2D grid is proposed in this paper. The concept of “cellular envelope” is newly introduced in this paper, which is defined as the smallest set of cells containing the given curve, and hence bounded by two tightest (inner and outer) isothetic polygons on the grid. Contrary to the existing algorithms that use thinning as preprocessing for a digital curve with changing thickness, in our work, an optimal cellular envelope (smallest in the number of constituent cells) that entirely contains the given curve is constructed based on a combinatorial technique. The envelope, in turn, is further analyzed to determine polygonal approximation of the curve as a sequence of cells using certain attributes of digital straightness. Since a real-world curve/curve-shaped object with varying thickness and unexpected disconnectedness is unsuitable for the existing algorithms on polygonal approximation, the curve is encapsulated by the cellular envelope to enable the polygonal approximation. Owing to the implicit Euclidean-free metrics and combinatorial properties prevailing in the cellular plane, implementation of the proposed algorithm involves primitive integer operations only, leading to fast execution of the algorithm. Experimental results including CPU time reinforce the elegance and efficacy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Image Analysis. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  2. Klette, R., Rosenfeld, A.: Digital straightness: A review. Discrete Applied Mathematics 139, 197–230 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aken, J.R.V., Novak, M.: Curve-drawing algorithms for raster display. ACM Trans. Graphics 4, 147–169 (1985)

    Article  Google Scholar 

  4. Attneave, F.: Some informational aspects of visual perception. Psychological Review 61, 183–193 (1954)

    Article  Google Scholar 

  5. Imai, H., Iri, M.: Computational geometric methods for polygonal approximations of a curve. CVGIP 36, 31–41 (1986)

    Google Scholar 

  6. Perez, J.C., Vidal, E.: Optimum polygonal approximation of digitized curves. PRL 15, 743–750 (1994)

    MATH  Google Scholar 

  7. Schröder, K., Laurent, P.: Efficient polygon approximations for shape signatures. In: Proc. ICIP, pp. 811–814 (1999)

    Google Scholar 

  8. Schuster, G.M., Katsaggelos, A.K.: An optimal polygonal boundary encoding scheme in the rate distortion sense. IEEE Trans. Circuits and Systems for Video Technology 7, 13–26 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Tanigawa, S., Katoh, N.: Polygonal curve approximation using grid points with application to a triangular mesh generation with small number of different edge lengths. In: Proc. AAIM 2006, pp. 161–172 (2006)

    Google Scholar 

  10. Teh, C.H., Chin, R.T.: On the detection of dominant points on digital curves. IEEE Trans. PAMI 2, 859–872 (1989)

    Google Scholar 

  11. Yin, P.Y.: Ant colony search algorithms for optimal polygonal approximation of plane curves. Pattern Recognition 36, 1783–1797 (2003)

    Article  MATH  Google Scholar 

  12. Rosin, P.L.: Techniques for assessing polygonal approximation of curves. IEEE Trans. PAMI 19, 659–666 (1997)

    Google Scholar 

  13. Yin, P.Y.: A new method for polygonal approximation using genetic algorithms. PRL 19, 1017–1026 (1998)

    MATH  Google Scholar 

  14. Devillers, O.: Inner and outer rounding of set operations on lattice polygonal regions. In: Proc. 20th Ann. Symp. Computational Geometry, pp. 429–437 (2004)

    Google Scholar 

  15. Cohen, J., et al.: Simplification Envelopes. In: Proc. SIGGRAPH, pp. 119–128 (1996)

    Google Scholar 

  16. Bhattacharya, P., Rosenfeld, A.: Contour codes of isothetic polygons. CVGIP 50, 353–363 (1990)

    Google Scholar 

  17. Bhowmick, P., Biswas, A., Bhattacharya, B.B.: Isothetic polygons of a 2D object on generalized grid. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 407–412. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: On finding a Tight Isothetic Polygonal Shape covering a 2d object. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Yu, B., Lin, X., Wu, Y., Yuan, B.: Isothetic polygon representation for contours. CVGIP 56, 264–268 (1992)

    Article  MATH  Google Scholar 

  20. Fam, A., Sklansky, J.: Cellularly straight images and the hausdorff metric. In: Proc. Conf. on Pattern Recognition and Image Processing, pp. 242–247 (1977)

    Google Scholar 

  21. Geer, P., McLaughlin, H.W.: Cellular lines: An introduction. Discrete Mathematics and Theoretical Computer Science, 167–178 (2003)

    Google Scholar 

  22. Kim, C.E.: On cellular straight line segments. Computer Graphics Image Processing 18, 369–391 (1982)

    Article  MATH  Google Scholar 

  23. Klette, R.: Cell complexes through time. In: Proc. Vision Geometry. SPIE, vol. 4117, pp. 134–145 (2000)

    Google Scholar 

  24. Rosenfeld, A.: Digital straight line segments. IEEE Transactions on Computers 23, 1264–1268 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electronic Computers EC-10, 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  26. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. Prentice Hall of India Pvt. Ltd., Englewood Cliffs (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhowmick, P., Biswas, A., Bhattacharya, B.B. (2006). PACE: Polygonal Approximation of Thick Digital Curves Using Cellular Envelope. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_27

Download citation

  • DOI: https://doi.org/10.1007/11949619_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics