Nothing Special   »   [go: up one dir, main page]

Skip to main content

Possibilistic C-Template Clustering and Its Application in Object Detection in Images

  • Conference paper
Advances in Image and Video Technology (PSIVT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4319))

Included in the following conference series:

Abstract

We present in this paper a new type of alternating-optimization based possibilistic c-shell clustering algorithm called possibilistic c-template (PCT). A template is represented by a set of line segments. A cluster prototype consists of a copy of the template after translation, scaling, and rotation transforms. This extends the capability of shell clustering beyond a few standard geometrical shapes that have been studied so far. We use a number of 2-dimensional data sets to illustrate the application of our algorithm in detecting generic template-based shapes in images. Techniques taken to relax the requirements of known number of clusters and good initialization are also described. Results for both synthetic and actual image data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, I., Bezdek, J.C.: An Application of the C-Varieties Algorithm to Polygonal Curve Fitting. IEEE Trans. Sys. Man Cybernet. 15, 637–641 (1985)

    Google Scholar 

  2. Dave, R.N.: Fuzzy Shell-Clustering and Application to Circle Detection in Digital Images. Int. J. Gen. Syst. 16, 343–355 (1990)

    Article  MathSciNet  Google Scholar 

  3. Krishnapuram, R., Nasraoui, O., Frigui, H.: The Fuzzy C Spherical Shells Algorithm: A New Approach. IEEE Trans. Neural Networks 3, 663–671 (1992)

    Article  Google Scholar 

  4. Krishnapurum, R., Frigui, H., Nasraoui, O.: Fuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation - Part I. IEEE. Trans. Fuzzy Systems 3, 29–43 (1995)

    Article  Google Scholar 

  5. Krishnapurum, R., Frigui, H., Nasraoui, O.: Fuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation - Part II. IEEE. Trans. Fuzzy Systems 3, 44–60 (1995)

    Article  Google Scholar 

  6. Frigui, H., Krishnapurum, R.: A Comparison of Fuzzy Shell Clustering Methods for the Detection of Ellipses. IEEE Trans. Fuzz. Sys. 4, 193–199 (1996)

    Article  Google Scholar 

  7. Hoeppner, F.: Fuzzy Shell Clustering Algorithms in Image Processing: Fuzzy C-Rectangular and 2-Rectangular Shells. IEEE Trans. Fuzzy Systems 5, 599–613 (1997)

    Article  Google Scholar 

  8. Gao, X.-B., Xie, W.-X., Liu, J.-Z., Li, J.: Template Based Fuzzy C-Shells Clustering Algorithm and Its Fast Implementation. In: Proc. ICSP, vol. 2, pp. 1269–1272 (1996)

    Google Scholar 

  9. Barni, M., Gualtieri, R.: A New Possibilistic Clustering Algorithm for Line Detection in Real World Imagery. Pattern Recognition 32, 1897–1909 (1999)

    Article  Google Scholar 

  10. Barni, M., Mecocci, A., Perugini, L.: Craters Detection via Possibilistic Shell Clustering. In: Proc. IEEE Int’l Conf. Image Processing, vol. 2, pp. 720–723 (2000)

    Google Scholar 

  11. Gath, I., Hoory, D.: Detection of Elliptic Shells Using Fuzzy Clustering: Application to MRI Images. In: Proc. ICPR, vol. 2, pp. 251–255 (1994)

    Google Scholar 

  12. Krishnapuram, R., Keller, J.M.: A Possibilistic Approach to Clustering. IEEE Trans. Fuzz. Sys. 1, 98–110 (1993)

    Article  Google Scholar 

  13. Hall, L.O., Ozyurt, I.B., Bezdek, J.C.: Clustering with a Genetically Optimized Approach. IEEE Trans. Evolutionary Computation 3, 103–112 (1999)

    Article  Google Scholar 

  14. Scheunders, P.: A Genetic C-Means Clustering Algorithm Applied to Color Image Quantization. Pattern Recognition 30, 859–866 (1997)

    Article  Google Scholar 

  15. Sheng, W., Swift, S., Zhang, L., Liu, X.: A Weighted Sum Validity Function for Clustering with a Hybrid Niching Genetic Algorithm. IEEE Trans. Sys. Man. Cibernet. Part B 35, 1156–1167 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T. (2006). Possibilistic C-Template Clustering and Its Application in Object Detection in Images. In: Chang, LW., Lie, WN. (eds) Advances in Image and Video Technology. PSIVT 2006. Lecture Notes in Computer Science, vol 4319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949534_38

Download citation

  • DOI: https://doi.org/10.1007/11949534_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68297-4

  • Online ISBN: 978-3-540-68298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics