Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Supervised Dimensionality Reduction Algorithm for Online Image Recognition

  • Conference paper
Advances in Image and Video Technology (PSIVT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4319))

Included in the following conference series:

Abstract

Image recognition on streaming data is one of the most challenging topics in Image and Video Technology and incremental dimensionality reduction algorithms play a key role in online image recognition. In this paper, we present a novel supervised dimensionality reduction algorithm—Incremental Weighted Karhunen-Loève expansion based on the Between-class scatter matrix (IWKLB) for image recognition on streaming data. In comparison with Incremental PCA, IWKLB is more effective in terms of recognition rate. In comparison with Incremental LDA, it is free of small sample size problems and can directly be applied to high-dimensional image spaces with high efficiency. Experimental results conducted on AR, one benchmark face image database, demonstrate that IWKLB is more effective than IPCA and ILDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oja, E., Karhunen, J.: On Stochastic Approximation of the Eigenvectors and Eigenvalues of the Expectation of a Random Matrix. J. Math. Analysis and Application 106, 69–84 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Sanger, T.D.: Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural Network. IEEE Trans. Neural Networks 2, 459–473 (1989)

    Google Scholar 

  3. Weng, J., Zhang, Y., Hwang, W.-S.: Candid Covariance-Free Incremental Principal Component Analysis. IEEE Trans. Pattern Anal. Machine Intell. 25, 1034–1040 (2003)

    Article  Google Scholar 

  4. Gill, P., Golub, G., Murray, W., Saunders, M.: Methods for modifying matrix factorizations. Mathematics of Computation 28, 505–535 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chandrasekaran, S., Manjunath, B., Wang, Y., Winkeler, J., Zhang, H.: An eigenspace update algorithm for image analysis. Graphical Models Image Process 59, 321–332 (1997)

    Article  Google Scholar 

  6. Li, Y.: On incremental and robust subspace learning. Pattern Recognition 37, 1509–1518 (2004)

    Article  MATH  Google Scholar 

  7. Pang, S., Ozawa, S., Kasabov, N.: Incremental linear discriminant analysis for classification of data streams. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 35, 905–914 (2005)

    Article  Google Scholar 

  8. Yan, J., Zhang, B., Liu, N., et al.: Effective and Efficient Dimensionality Reduction for Large-Scale and Streaming Data Preprocessing. IEEE Trans. on Knowl. Data Eng. 18(3), 320–333 (2006)

    Article  Google Scholar 

  9. Park, H., Jeon, M., Rosen, J.: Lower Dimensional Representation of Text Data Based on Centroids and Least Squares. BIT Numerical Math. 43, 427–448 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Belhumeur, P.N., Hespanha, J.P., Kriengman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. on Pattern Anal. Machine Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  11. Chen, L., Liao, H., Ko, M., Lin, J., Yu, G.: A New LDA-Based Face Recognition System Which Can Solve The Small Sample Size Problem. Pattern Recognition 33(10), 1713–1726 (2000)

    Article  Google Scholar 

  12. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recognition 34(10), 2067–2070 (2001)

    Article  MATH  Google Scholar 

  13. Martinez, A.M., Benavente, R.: The AR Face Database, CVC Technical Report, no. 24 (June 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, F., Zhang, D., Chen, Q., Yang, J. (2006). A Novel Supervised Dimensionality Reduction Algorithm for Online Image Recognition. In: Chang, LW., Lie, WN. (eds) Advances in Image and Video Technology. PSIVT 2006. Lecture Notes in Computer Science, vol 4319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949534_20

Download citation

  • DOI: https://doi.org/10.1007/11949534_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68297-4

  • Online ISBN: 978-3-540-68298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics