Nothing Special   »   [go: up one dir, main page]

Skip to main content

A GPGPU Approach for Accelerating 2-D/3-D Rigid Registration of Medical Images

  • Conference paper
Parallel and Distributed Processing and Applications (ISPA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4330))

Abstract

This paper presents a fast 2-D/3-D rigid registration method using a GPGPU approach, which stands for general-purpose computation on the graphics processing unit (GPU). Our method is based on an intensity-based registration algorithm using biplane images. To accelerate this algorithm, we execute three key procedures of 2-D/3-D registration on the GPU: digitally reconstructed radiograph (DRR) generation, gradient image generation, and normalized cross correlation (NCC) computation. We investigate the usability of our method in terms of registration time and robustness. The experimental results show that our GPU-based method successfully completes a registration task in about 10 seconds, demonstrating shorter registration time than a previous method based on a cluster computing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lemieux, L., Jagoe, R., Fish, D.R., Kitchen, N.D., Thomas, D.G.T.: A patient-to-computed-tomography image registration method based on digitally reconstructed radiographs. Medical Physics 21(11), 1749–1760 (1994)

    Article  Google Scholar 

  2. Hajnal, J.V., Hill, D.L., Hawkes, D.J. (eds.): Medical Image Registration. CRC Press, Boca Raton (2001)

    Google Scholar 

  3. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  4. Montrym, J., Moreton, H.: The GeForce 6800. IEEE Micro 25(2), 41–51 (2005)

    Article  Google Scholar 

  5. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance computing. In: Proc. Int’l Conf. High Performance Computing, Networking and Storage (SC 2004) (2004)

    Google Scholar 

  6. Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient algorithms for solving dense linear systems on graphics hardware. In: Proc. Int’l Conf. High Performance Computing, Networking, Storage and Analysis (SC 2005) (2005)

    Google Scholar 

  7. Takizawa, H., Kobayashi, H.: Multi-grain parallel processing of data-clustering on programmable graphics hardware. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358, pp. 16–27. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. GPGPU: General-Purpose Computation Using Graphics Hardware (2005), http://www.gpgpu.org/

  9. Ino, F., Kawasaki, Y., Tashiro, T., Nakajima, Y., Sato, Y., Tamura, S., Hagihara, K.: A parallel implementation of 2-d/3-d image registration for computer-assisted surgery. In: Proc. 11th Int’l Conf. Parallel and Distributed Systems (ICPADS 2005), Workshops, vol. II, pp. 316–320 (2005)

    Google Scholar 

  10. LaRose, D.A.: Iterative X-Ray/CT Registration Using Accelerated Volume Rendering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA (2001)

    Google Scholar 

  11. Chisu, R.: Techniques for Accelerating Intensity-based Rigid Image Registration. PhD thesis, Technische Universität München, München, Germany (2005)

    Google Scholar 

  12. Li, S., Pelizzari, C.A., Chen, G.T.Y.: Unfolding patient motion with biplane radiographs. Medical Physics 21(9), 1427–1433 (1994)

    Article  Google Scholar 

  13. Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G., Hawkes, D.J.: A comparison of similarity measures for use in 2-D–3-D medical image registration. IEEE Trans. Medical Imaging 17(4), 586–595 (1998)

    Article  Google Scholar 

  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: NUMERICAL RECIPES in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  15. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In: EUROGRAPHICS 2005, State of the Art Report, pp. 21–51 (2005)

    Google Scholar 

  16. Khailany, B., Dally, W.J., Kapasi, U.J., Mattson, P., Namkoong, J., Owens, J.D., Towles, B., Chang, A., Rixner, S.: Imagine: Media processing with streams. IEEE Micro 21(2), 35–46 (2001)

    Article  Google Scholar 

  17. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide, 4th edn. Addison-Wesley, Reading (2003)

    Google Scholar 

  18. Hillesland, K.E., Lastra, A.: GPU floating point paranoia. In: Proc. 1st ACM Workshop General-Purpose Computing on Graphics Processors (GP2’04) p.C–8 (2004)

    Google Scholar 

  19. Stevenson, D.: A proposed standard for binary floating-point arithmetic. IEEE Computer 14(3), 51–62 (1981)

    MathSciNet  Google Scholar 

  20. Cullip, T.J., Neumann, U.: Accelerating volume reconstruction with 3D texture hardware. Technical Report TR93-027, University of North Carolina at Chapel Hill (1993)

    Google Scholar 

  21. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: A system for programming graphics hardware in a C-like language. ACM Trans. Graphics 22(3), 896–897 (2003)

    Article  Google Scholar 

  22. Ikeda, T., Ino, F., Hagihara, K.: A code motion technique for accelerating general-purpose computation on the GPU. In: Proc. 20th IEEE Int’l Parallel and Distributed Processing Symp (IPDPS 2006), pages 10 (CD-ROM) (2006)

    Google Scholar 

  23. Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Medical Imaging 17(5), 694–702 (1998)

    Article  Google Scholar 

  24. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N., Su, W.K.: Myrinet: A gigabit-per-second local area network. IEEE Micro 15(1), 29–36 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ino, F., Gomita, J., Kawasaki, Y., Hagihara, K. (2006). A GPGPU Approach for Accelerating 2-D/3-D Rigid Registration of Medical Images. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds) Parallel and Distributed Processing and Applications. ISPA 2006. Lecture Notes in Computer Science, vol 4330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11946441_84

Download citation

  • DOI: https://doi.org/10.1007/11946441_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68067-3

  • Online ISBN: 978-3-540-68070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics