Abstract
This paper presents a fast 2-D/3-D rigid registration method using a GPGPU approach, which stands for general-purpose computation on the graphics processing unit (GPU). Our method is based on an intensity-based registration algorithm using biplane images. To accelerate this algorithm, we execute three key procedures of 2-D/3-D registration on the GPU: digitally reconstructed radiograph (DRR) generation, gradient image generation, and normalized cross correlation (NCC) computation. We investigate the usability of our method in terms of registration time and robustness. The experimental results show that our GPU-based method successfully completes a registration task in about 10 seconds, demonstrating shorter registration time than a previous method based on a cluster computing approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lemieux, L., Jagoe, R., Fish, D.R., Kitchen, N.D., Thomas, D.G.T.: A patient-to-computed-tomography image registration method based on digitally reconstructed radiographs. Medical Physics 21(11), 1749–1760 (1994)
Hajnal, J.V., Hill, D.L., Hawkes, D.J. (eds.): Medical Image Registration. CRC Press, Boca Raton (2001)
Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)
Montrym, J., Moreton, H.: The GeForce 6800. IEEE Micro 25(2), 41–51 (2005)
Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance computing. In: Proc. Int’l Conf. High Performance Computing, Networking and Storage (SC 2004) (2004)
Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient algorithms for solving dense linear systems on graphics hardware. In: Proc. Int’l Conf. High Performance Computing, Networking, Storage and Analysis (SC 2005) (2005)
Takizawa, H., Kobayashi, H.: Multi-grain parallel processing of data-clustering on programmable graphics hardware. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358, pp. 16–27. Springer, Heidelberg (2004)
GPGPU: General-Purpose Computation Using Graphics Hardware (2005), http://www.gpgpu.org/
Ino, F., Kawasaki, Y., Tashiro, T., Nakajima, Y., Sato, Y., Tamura, S., Hagihara, K.: A parallel implementation of 2-d/3-d image registration for computer-assisted surgery. In: Proc. 11th Int’l Conf. Parallel and Distributed Systems (ICPADS 2005), Workshops, vol. II, pp. 316–320 (2005)
LaRose, D.A.: Iterative X-Ray/CT Registration Using Accelerated Volume Rendering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA (2001)
Chisu, R.: Techniques for Accelerating Intensity-based Rigid Image Registration. PhD thesis, Technische Universität München, München, Germany (2005)
Li, S., Pelizzari, C.A., Chen, G.T.Y.: Unfolding patient motion with biplane radiographs. Medical Physics 21(9), 1427–1433 (1994)
Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G., Hawkes, D.J.: A comparison of similarity measures for use in 2-D–3-D medical image registration. IEEE Trans. Medical Imaging 17(4), 586–595 (1998)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: NUMERICAL RECIPES in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1988)
Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In: EUROGRAPHICS 2005, State of the Art Report, pp. 21–51 (2005)
Khailany, B., Dally, W.J., Kapasi, U.J., Mattson, P., Namkoong, J., Owens, J.D., Towles, B., Chang, A., Rixner, S.: Imagine: Media processing with streams. IEEE Micro 21(2), 35–46 (2001)
Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide, 4th edn. Addison-Wesley, Reading (2003)
Hillesland, K.E., Lastra, A.: GPU floating point paranoia. In: Proc. 1st ACM Workshop General-Purpose Computing on Graphics Processors (GP2’04) p.C–8 (2004)
Stevenson, D.: A proposed standard for binary floating-point arithmetic. IEEE Computer 14(3), 51–62 (1981)
Cullip, T.J., Neumann, U.: Accelerating volume reconstruction with 3D texture hardware. Technical Report TR93-027, University of North Carolina at Chapel Hill (1993)
Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: A system for programming graphics hardware in a C-like language. ACM Trans. Graphics 22(3), 896–897 (2003)
Ikeda, T., Ino, F., Hagihara, K.: A code motion technique for accelerating general-purpose computation on the GPU. In: Proc. 20th IEEE Int’l Parallel and Distributed Processing Symp (IPDPS 2006), pages 10 (CD-ROM) (2006)
Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body point-based registration. IEEE Trans. Medical Imaging 17(5), 694–702 (1998)
Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N., Su, W.K.: Myrinet: A gigabit-per-second local area network. IEEE Micro 15(1), 29–36 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ino, F., Gomita, J., Kawasaki, Y., Hagihara, K. (2006). A GPGPU Approach for Accelerating 2-D/3-D Rigid Registration of Medical Images. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds) Parallel and Distributed Processing and Applications. ISPA 2006. Lecture Notes in Computer Science, vol 4330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11946441_84
Download citation
DOI: https://doi.org/10.1007/11946441_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68067-3
Online ISBN: 978-3-540-68070-3
eBook Packages: Computer ScienceComputer Science (R0)