Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minimal Interval Completion Through Graph Exploration

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

Given an arbitrary graph G=(V,E) and an interval graph H=(V,F) with E ⊆ F we say that H is an interval completion of G. The graph H is called a minimal interval completion of G if, for any sandwich graph H ′ = (V,F ′) with E ⊆ F′ ⊂ F, H ′ is not an interval graph. In this paper we give a \({{\mathcal{O}}(nm)}\) time algorithm computing a minimal interval completion of an arbitrary graph. The output is an interval model of the completion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berry, A., Bordat, J.P.: Separability Generalizes Dirac’s Theorem. Discrete Applied Mathematics 84(1-3), 43–53 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berry, A., Bordat, J.P.: Local LexBFS Properties in an Arbitrary Graph. Proceedings of Journées Informatiques Messines (2000), http://www.isima.fr/berry/lexbfs.ps

  3. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai, L.: Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canadian Journal of Mathematics 16, 539–548 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)

    MATH  Google Scholar 

  7. Habib, M., Paul, C., Viennot, L.: Partition Refinement Techniques: An Interesting Algorithmic Tool Kit. International Journal of Foundations of Computer Science 10(2), 147–170 (1999)

    Article  MathSciNet  Google Scholar 

  8. Heggernes, P., Mancini, F.: Minimal Split Completions of Graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal Comparability Completions. Tech. Report, University of Bergen (2006), http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-317.pdf

  10. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal Interval Completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n α log n) = o(n 2.376). In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms - SODA 2005, pp. 907–916. SIAM, Philadelphia (2005)

    Google Scholar 

  12. Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Processing Letters 37(1), 21–25 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rappaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, Springer, Heidelberg (2006), www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2006.htm.en

    Chapter  Google Scholar 

  14. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)

    Article  MathSciNet  Google Scholar 

  15. Suchan, K., Todinca, I.: Minimal interval vompletion through graph exploration. Research Report RR 2006-08, Université d’Orléans, www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2006.htm.en

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suchan, K., Todinca, I. (2006). Minimal Interval Completion Through Graph Exploration. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_52

Download citation

  • DOI: https://doi.org/10.1007/11940128_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics