Nothing Special   »   [go: up one dir, main page]

Skip to main content

A 6-Approximation Algorithm for Computing Smallest Common AoN-Supertree with Application to the Reconstruction of Glycan Trees

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

A node-labeled rooted tree T (with root r) is an all-or-nothing subtree (called AoN-subtree) of a node-labeled rooted tree T′ if (1) T is a subtree of the tree rooted at some node u (with the same label as r) of T′, (2) for each internal node v of T, all the neighbors of v in T′ are the neighbors of v in T. Tree T′ is then called an AoN-supertree of T. Given a set \({\mathcal {T}}=\{{T}_1,{T}_2,\cdots, {T}_n\}\) of nnode-labeled rooted trees, smallest common AoN-supertree problem seeks the smallest possible node-labeled rooted tree (denoted as \({\textbf{LCST}}\)) such that every tree T i in \({\mathcal {T}}\) is an AoN-subtree of \({\textbf{LCST}}\). It generalizes the smallest superstring problem and it has applications in glycobiology. We present a polynomial-time greedy algorithm with approximation ratio 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turner, J.S.: Approximation algorithms for the shortest common superstring problem. Information and Computation, 1–20 (1989)

    Google Scholar 

  2. Teng, S., Yao, F.: Approximating shortest superstrings. In: Annual Symposium on Foundations of Computer Science (1993)

    Google Scholar 

  3. Weinard, M., Schnitger, G.: On the greedy superstring conjecture. In: FST TCS 2003: Foundations of Software Technology and Theoretical Computer Science, pp. 387–398 (2003)

    Google Scholar 

  4. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett. 93, 13–17 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest superstrings. Journal of the ACM 41, 630–647 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Sweedyk, Z.: A \(2\frac{1}{2}\)-approximation algorithm for shortest superstring. SIAM Journal of Computing 29, 954–986 (1999)

    Article  MathSciNet  Google Scholar 

  7. Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest superstring problem. Combinatorial Pattern Matching, 87–101 (1996)

    Google Scholar 

  8. Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K., Ueda, N., Hamajima, M., Kawasaki, T., Kanehisa, M.: Kegg as a glycome informatics resource. Glycobiology (2005)

    Google Scholar 

  9. Aoki, K., Yamaguchi, A., Ueda, N., Akutsu, T., Mamitsuka, H., Goto, S., Kanehisa, M.: Kcam (kegg carbohydrate matcher): A software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Research, W267–W272 (2004)

    Google Scholar 

  10. Aoki, K., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M., Mamitsuka, H.: Efficient tree-matching methods for accurate carbohydrate database queries. In: Proceedings of the Fourteenth International Conference on Genome Informatics (Genome Informatics, 14), pp. 134–143. Universal Academy Press (2003)

    Google Scholar 

  11. Aoki, K.F., Mamitsuka, H., Akutsu, T., Kanehisa, M.: A score matrix to reveal the hidden links in glycans. Bioinformatics 8, 1457–1463 (2005)

    Google Scholar 

  12. Ueda, N., Aoki-Kinoshita, K.F., Yamaguchi, A., Akutsu, T., Mamitsuka, H.: A probabilistic model for mining labeled ordered trees: capturing patterns in carbohydrate sugar chains. IEEE Transactions on Knowledge and Data Engineering 17, 1051–1064 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aoki-Kinoshita, K.F., Kanehisa, M., Kao, MY., Li, XY., Wang, W. (2006). A 6-Approximation Algorithm for Computing Smallest Common AoN-Supertree with Application to the Reconstruction of Glycan Trees. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_12

Download citation

  • DOI: https://doi.org/10.1007/11940128_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics