Nothing Special   »   [go: up one dir, main page]

Skip to main content

Introducing Partitioning Training Set Strategy to Intrinsic Incremental Evolution

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

Abstract

In this paper, to conquer the scalability issue of evolvable hardware (EHW), we introduce a novel system-decomposition-strategy which realizes training set partition in the intrinsic evolution of a non-truth table based 32 characters classification system. The new method is expected to improve the convergence speed of the proposed evolvable system by compressing fitness value evaluation period which is often the most time-consuming part in an evolutionary algorithm (EA) run and reducing computational complexity of EA. By evolving target characters classification system in a complete FPGA-based experiment platform, this research investigates the influence of introducing partitioning training set technique to non-truth table based circuit evolution. The experimental results conclude that it is possible to evolve characters classification systems larger and faster than those evolved earlier, by employing our proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yao, X., Higuchi, T.: Promises and Challenges of Evolvable Hardware. IEEE Transactions on Systems, Man, and Cybernetics 29(1), 87–97 (1999)

    Article  Google Scholar 

  2. Higuchi, T., et al.: Real-World Applications of Analog and Digital Evolvable Hardware. IEEE Transactions on Evolutionary Computation 3(3), 220–235 (1999)

    Article  Google Scholar 

  3. Sekanina, L.: Evolutionary Design of Digital Circuits: Where Are Current Limits? In: Proc. of the First NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2006, pp. 171–178. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  4. Kajitani, I., et al.: Variable Length Chromosome GA for Evolvable Hardware. In: Proc. of the 3rd International Conference on Evolutionary Computation ICEC 1996, pp. 443–447. IEEE press, Los Alamitos (1996)

    Chapter  Google Scholar 

  5. Murakawa, M., et al.: Hardware Evolution at Function Level. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 62–71. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Paredis, J.: Coevolutionary Computation. Artificial Life 2(4), 355–375 (1995)

    Article  Google Scholar 

  7. Islas Pérez, E., et al.: Genetic Algorithms and Case-Based Reasoning as a Discovery and Learning Machine in the Optimization of Combinational Logic Circuits. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 128–137. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Torresen, J.: A Divide-and-Conquer Approach to Evolvable Hardware. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 57–65. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Torresen, J.: A Scalable Approach to Evolvable Hardware. Genetic Programming and Evolvable Machines 3(3), 259–282 (2002)

    Article  MATH  Google Scholar 

  10. Torresen, J.: Evolving Multiplier Circuits by Training Set and Training Vector Partitioning. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 228–237. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Stomeo, E., Kalganova, T.: Improving EHW Performance Introducing a New Decomposition Strategy. In: Proc. of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp. 439–444 (2004)

    Google Scholar 

  12. Stomeo, E., et al.: Generalized Disjunction Decomposition for the Evolution of Programmable Logic Array Structures. In: Proc. of the First NASA/ESA Conference on Adaptive Hardware and Systems AHS 2006, pp. 179–185. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  13. Wang, J., et al.: Using Reconfigurable Architecture-Based Intrinsic Incremental Evolution to Evolve a Character Classification System. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 216–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Sekanina, L.: Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 186–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Celoxica Inc.: RC1000 Hardware Reference Manual V2.3 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Lee, C.H. (2006). Introducing Partitioning Training Set Strategy to Intrinsic Incremental Evolution. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_26

Download citation

  • DOI: https://doi.org/10.1007/11925231_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics