Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Connectionist Fuzzy Case-Based Reasoning Model

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

  • 1001 Accesses

Abstract

This paper presents a new version of an existing hybrid model for the development of knowledge-based systems, where case-based reasoning is used as a problem solver. Numeric predictive attributes are modeled in terms of fuzzy sets to define neurons in an associative Artificial Neural Network (ANN). After the Fuzzy-ANN is trained, its weights and the membership degrees in the training examples are used to automatically generate a local distance function and an attribute weighting scheme. Using this distance function and following the Nearest Neighbor rule, a new hybrid Connectionist Fuzzy Case-Based Reasoning model is defined. Experimental results show that the model proposed allows to develop knowledge-based systems with a higher accuracy than when using the original model. The model takes the advantages of the approaches used, providing a more natural framework to include expert knowledge by using linguistic terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kolodner, J.: An introduction to case-based reasoning. Artificial Intelligence Review 6, 3–34 (1992)

    Article  Google Scholar 

  2. García, M.M., Bello, P.R.: A model and its different applications to case-based reasoning. Knowledge-based systems 9, 465–473 (1996)

    Article  Google Scholar 

  3. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Comm. of ACM 29, 1213–1228 (1986)

    Article  Google Scholar 

  4. McClelland, D., Rumelhart, E.: Explorations in parallel distributed processing. MIT Press, Cambridge (1989)

    Google Scholar 

  5. Kurgan, L., Krzysztof, C.: CAIM Discretization Algorithm. IEEE Transactions on Knowledge and Data Engineering 16(2) (2004)

    Google Scholar 

  6. Zadeh, L.A.: The concept of a lingüistic variable and Its Application to Approximate Reasoning. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  7. Zadeh, L.A.: From Computing with Numbers to Computing with Words -From Manipulation of Measurements to Manipulation of Perceptions. Intelligent Systems and Soft Computing, 3–40 (2000)

    Google Scholar 

  8. Włodzisław, D.: Similarity-based methods: a general framework for classification, approximation and association. Control and Cybernetics 29(4) (2000)

    Google Scholar 

  9. Aha, D.W.: Feature weighting for lazy learning algorithms. In: Liu, H., Motoda, H. (eds.) Feature Extraction, Construction and Selection: A Data Mining Perspective, Kluwer, Norwell, MA (1998)

    Google Scholar 

  10. Morell, C., Bello, R., Grau, R.: Improving k-NN by Using Fuzzy Similarity Functions. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 708–716. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Wettschereck, D., Aha, D.W., Mohri, T.: A Review And Empirical Evaluation Of Feature Weighting Methods For A Class Of Lazy Learning Algorithms. Artificial Intelligence Review 11, 273–314 (1997)

    Article  Google Scholar 

  12. Casillas, O., Cordón, F., Herrera, L.: Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview. Interpretability issues in fuzzy modeling, vol. 128, Springer (2003)

    Google Scholar 

  13. García, M., Rodriguez, Y., Bello, R.: Usando conjuntos borrosos para implementar un modelo para sistemas basados en casos interpretativos. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000. LNCS (LNAI), vol. 1952, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Murphy, P.M., Aha, D.W.: UCI Repository of Machine-Learning Databases, http://www.ics.uci.edu/~mlearn/mlrepository.htm

  15. Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6(1), 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Mitchell, T.M.: The Need for Biases in Learning Generalizations. In: Shavlik, J.W., Dietterich, T.G. (eds.) Readings in Machine Learning, pp. 184–191. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  17. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  18. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning. Neural and Statistical Classification (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodriguez, Y., Garcia, M.M., De Baets, B., Morell, C., Bello, R. (2006). A Connectionist Fuzzy Case-Based Reasoning Model. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_17

Download citation

  • DOI: https://doi.org/10.1007/11925231_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics