Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Algorithm for Connected Attribute Thinnings and Thickenings

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Included in the following conference series:

Abstract

Connected attribute filters are morphological operators widely used for their ability of simplifying the image without moving its contours. In this paper, we present a fast, versatile and easy-to-implement algorithm for grayscale connected attribute thinnings and thickennings, a subclass of connected filters for the wide range of non-increasing attributes. We show that our algorithm consumes less memory and is computationally more efficient than other available methods on natural images, for strictly identical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acton, S.T., Mukherjee, D.P.: Scale space classification using area morphology. IEEE Transactions on Image Processing 9(4), 623–635 (2000)

    Article  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  3. Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)

    Article  Google Scholar 

  4. Caselles, V., Monasse, P.: Grain filters. J. of Math. Imaging and Vision 17(3), 249–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crespo, J., Schafer, R., Serra, J., Gratin, C., Meyer, F.: The flat zone approach: A general low-level region merging segmentation method. Signal Processing 62(1), 37–60 (1998)

    Article  Google Scholar 

  6. Darbon, J., Akgül, C.B.: An efficient algorithm for attribute openings and closings. In: Proceedings of the 13th European Signal Processing Conference (EUSIPCO), Electronic proceedings (2005)

    Google Scholar 

  7. Dial, R., Glover, F., Karney, D., Klingman, D.: A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees. Networks 9, 215–248 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guichard, F., Morel, J.M.: Mathematical morphology ”almost everywhere”. In: Proceedings of ISMM, pp. 293–303. Csiro Publishing (April 2002)

    Google Scholar 

  9. Heijmans, H.: Connected morphological operators for binary images. Computer Vision and Image Understanding 73(1), 99–120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heijmans, H.J.A.M.: Theoretical aspects of gray-level morphology. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 568–582 (1991)

    Article  Google Scholar 

  11. Hesselink, W.H.: Salembier’s min-tree algorithm turned into breadth first search. Information Processing Letters 88(5), 225–229 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maragos, P., Ziff, R.D.: Threshold superposition in morphological image analysis systems. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(5), 498–504 (1990)

    Article  Google Scholar 

  13. Meijster, A., Westenberg, M.A., Wilkinson, M.H.F.: Interactive shape preserving filtering and visualization of volumetric data. In: Proc. of the Conf. Comp. Signal Image Proc. (SIP), Kauai, Hawaii, USA, August 2002, pp. 640–643 (2002)

    Google Scholar 

  14. Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set openings and closings. IEEE Trans. on PAMI 24(4), 484–494 (2002)

    Google Scholar 

  15. Meyer, F.: Levelings, image simplification filters for segmentation. Journal of Mathematical Imaging and Vision 20, 59–72 (2004)

    Article  MathSciNet  Google Scholar 

  16. Najman, L., Couprie, M.: Quasi-linear algorithm for the component tree. In: SPIE Symposium on Electronic Imaging, pp. 18–22 (2004)

    Google Scholar 

  17. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing (accepted, 2006)

    Google Scholar 

  18. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. on Image Processing 7(4), 555–570 (1998)

    Article  Google Scholar 

  19. Salembier, P., Serra, J.: Flat zones filtering, connected operators and filters by reconstruction. IEEE Transactions on Image Processing 4, 1153–1160 (1995)

    Article  Google Scholar 

  20. Serra, J., Salembier, P.: Connected operators and pyramids. In: Proc. SPIE Image Algebra Math. Morphology, vol. 2030, pp. 65–76 (1993)

    Google Scholar 

  21. Soille, P.: Morphological Image Analysis Principles and Applications. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  22. Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-scale shape filters. In: Proceedings of the International on Mathematical Morphology, pp. 305–314 (2002)

    Google Scholar 

  23. Vachier, C.: Morphological scale-space analysis and feature extraction. In: Proceedings of the ICIP 2001, October 2001, pp. 676–679 (2001)

    Google Scholar 

  24. Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: Proc. EURASIP Mathematical Morphology and Its Application to Signal Processing, pp. 22–27 (1993)

    Google Scholar 

  25. Wilkinson, M.H.F., Roerdink, J.B.T.M.: Fast morphological attribute operations using tarjan’s union-find algorithm. In: Proceedings of the ISMM, Palo Alto, CA, June 2000, pp. 311–320 (2000)

    Google Scholar 

  26. Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lesage, D., Darbon, J., Akgül, C.B. (2006). An Efficient Algorithm for Connected Attribute Thinnings and Thickenings. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_41

Download citation

  • DOI: https://doi.org/10.1007/11919629_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics