Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Implicit Representation of Chordal Comparabilty Graphs in Linear-Time

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2006)

Abstract

Ma and Spinrad have shown that every transitive orientation of a chordal comparability graph is the intersection of four linear orders. That is, chordal comparability graphs are comparability graphs of posets of dimension four. Among other uses, this gives an implicit representation of a chordal comparability graph using O(n) integers so that, given two vertices, it can be determined in O(1) time whether they are adjacent, no matter how dense the graph is. We give a linear-time algorithm for finding the four linear orders, improving on their bound of O(n 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. McGraw-Hill, Boston (2001)

    MATH  Google Scholar 

  2. Duschnik, B., Miller, E.W.: Partially ordered sets. Amer. J. Math. 63, 600–610 (1941)

    Article  MathSciNet  Google Scholar 

  3. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  4. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30, 209–221 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kierstead, H., Trotter, W.T., Qin, J.: The dimension of cycle-free orders. Order 9, 103–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ma, T., Spinrad, J.P.: Cycle-free partial orders and chordal comparability graphs. Order 8, 49–61 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Mathematics 201(1-3), 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rose, D., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Spinrad, J.: Efficient Graph Representations. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  10. Tarjan, R.E.: Data structures and network algorithms. Society for Industrial and Applied Math., Philadelphia (1983)

    Google Scholar 

  11. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebraic and Discrete Methods 3, 303–322 (1982)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curtis, A.R., Izurieta, C., Joeris, B., Lundberg, S., McConnell, R.M. (2006). An Implicit Representation of Chordal Comparabilty Graphs in Linear-Time. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_16

Download citation

  • DOI: https://doi.org/10.1007/11917496_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48381-6

  • Online ISBN: 978-3-540-48382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics