Abstract
In recent years, much attention has been given to the problem of outlier detection, whose aim is to detect outliers — individuals who behave in an unexpected way or have abnormal properties. Outlier detection is critically important in the information-based society. In this paper, we propose a new definition for outliers in rough set theory which exploits the rough membership function. An algorithm to find such outliers in rough set theory is also given. The effectiveness of our method for outlier detection is demonstrated on two publicly available databases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Knorr, E., Ng, R.: Algorithms for Mining Distance-based Outliers in Large Datasets. In: Proc. of the 24th VLDB Conf., New York, pp. 392–403 (1998)
Hawkins, D.: Identifications of Outliers. Chapman and Hall, London (1980)
Pawlak, Z.: ”Rough sets”. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough membership functions. In: Advances in the Dempster-Shafer Theory of Evidence, pp. 251–271. John Wiley Sons, New York (1994)
Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data, Dallas, pp. 93–104 (2000)
Jiang, F., Sui, Y., Cao, C.: Outlier Detection Using Rough Set Theory. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 79–87. Springer, Heidelberg (2005)
Jiang, F., Sui, Y.F., Cao, C.G.: Some Issues about Outlier Detection in Rough Set Theory. Special Issues on Rough Sets in China in LNCS Transactions on Rough Sets (submitted)
Bay, S.D.: The UCI KDD repository (1999), http://kdd.ics.uci.edu
Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: Proc. of the 2001 ACM SIGMOD Int. Conf. on Managment of Data, California, pp. 37–46 (2001)
Harkins, S., He, H.X., Willams, G.J., Baxter, R.A.: Outlier detection using replicator neural networks. In: Proc. of the 4th Int. Conf. on Data Warehousing and Knowledge Discovery, France, pp. 170–180 (2002)
Willams, G.J., Baxter, R.A., He, H.X., Harkins, S., Gu, L.F.: A Comparative Study of RNN for Outlier Detection in Data Mining. In: ICDM 2002, Japan, pp. 709–712 (2002)
He, Z.Y., Deng, S.C., Xu, X.F.: An Optimization Model for Outlier Detection in Categorical Data. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 400–409. Springer, Heidelberg (2005)
Slezak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approx. Reasoning 40(1-2), 81–91 (2005)
Slezak, D., Ziarko, W.: Variable Precision Bayesian Rough Set Model. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 312–315. Springer, Heidelberg (2003)
Nguyen, S.H., Nguyen, H.S.: Some efficient algorithms for rough set methods. In: IPMU 1996, Granada, Spain, pp. 1451–1456 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jiang, F., Sui, Y., Cao, C. (2006). Outlier Detection Based on Rough Membership Function. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_41
Download citation
DOI: https://doi.org/10.1007/11908029_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47693-1
Online ISBN: 978-3-540-49842-1
eBook Packages: Computer ScienceComputer Science (R0)