Nothing Special   »   [go: up one dir, main page]

Skip to main content

Outlier Detection Based on Rough Membership Function

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4259))

Included in the following conference series:

Abstract

In recent years, much attention has been given to the problem of outlier detection, whose aim is to detect outliers — individuals who behave in an unexpected way or have abnormal properties. Outlier detection is critically important in the information-based society. In this paper, we propose a new definition for outliers in rough set theory which exploits the rough membership function. An algorithm to find such outliers in rough set theory is also given. The effectiveness of our method for outlier detection is demonstrated on two publicly available databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knorr, E., Ng, R.: Algorithms for Mining Distance-based Outliers in Large Datasets. In: Proc. of the 24th VLDB Conf., New York, pp. 392–403 (1998)

    Google Scholar 

  2. Hawkins, D.: Identifications of Outliers. Chapman and Hall, London (1980)

    Google Scholar 

  3. Pawlak, Z.: ”Rough sets”. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Pawlak, Z.: Rough sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  5. Pawlak, Z., Skowron, A.: Rough membership functions. In: Advances in the Dempster-Shafer Theory of Evidence, pp. 251–271. John Wiley Sons, New York (1994)

    Google Scholar 

  6. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of Data, Dallas, pp. 93–104 (2000)

    Google Scholar 

  7. Jiang, F., Sui, Y., Cao, C.: Outlier Detection Using Rough Set Theory. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 79–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Jiang, F., Sui, Y.F., Cao, C.G.: Some Issues about Outlier Detection in Rough Set Theory. Special Issues on Rough Sets in China in LNCS Transactions on Rough Sets (submitted)

    Google Scholar 

  9. Bay, S.D.: The UCI KDD repository (1999), http://kdd.ics.uci.edu

  10. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: Proc. of the 2001 ACM SIGMOD Int. Conf. on Managment of Data, California, pp. 37–46 (2001)

    Google Scholar 

  11. Harkins, S., He, H.X., Willams, G.J., Baxter, R.A.: Outlier detection using replicator neural networks. In: Proc. of the 4th Int. Conf. on Data Warehousing and Knowledge Discovery, France, pp. 170–180 (2002)

    Google Scholar 

  12. Willams, G.J., Baxter, R.A., He, H.X., Harkins, S., Gu, L.F.: A Comparative Study of RNN for Outlier Detection in Data Mining. In: ICDM 2002, Japan, pp. 709–712 (2002)

    Google Scholar 

  13. He, Z.Y., Deng, S.C., Xu, X.F.: An Optimization Model for Outlier Detection in Categorical Data. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 400–409. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Slezak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approx. Reasoning 40(1-2), 81–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Slezak, D., Ziarko, W.: Variable Precision Bayesian Rough Set Model. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 312–315. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Nguyen, S.H., Nguyen, H.S.: Some efficient algorithms for rough set methods. In: IPMU 1996, Granada, Spain, pp. 1451–1456 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, F., Sui, Y., Cao, C. (2006). Outlier Detection Based on Rough Membership Function. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_41

Download citation

  • DOI: https://doi.org/10.1007/11908029_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47693-1

  • Online ISBN: 978-3-540-49842-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics