Nothing Special   »   [go: up one dir, main page]

Skip to main content

Missing Template Decomposition Method and Its Implementation in Rough Set Exploration System

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4259))

Included in the following conference series:

Abstract

We describe a method of dealing with sets that contain missing information in case of classification task. The described method uses multi-stage scheme that induces and combines classifiers for complete parts of the original data. The principles of the proposed Missing Template Decomposition Method are presented together with general explanation of the implementation within the RSES framework. The introduced ideas are illustrated with an example of classification experiment on a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag (2000)

    Google Scholar 

  2. Bazan, J.G., Szczuka, M.S.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Gediga, G., Düntsch, I.: Maximum consistency of incomplete data via non-invasive imputation. Artificial Intelligence Review 19(1), 93–107 (2003)

    Article  Google Scholar 

  4. Grzymała-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: [15], pp. 378–385

    Google Scholar 

  5. Grzymała-Busse, J.W., Wang, A.Y.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proceedings of 5th Workshop on Rough Sets and Soft Computing (RSSC 1997) at the 3rd Joint Conference on Information Sciences, Research Triangle Park (NC, USA), pp. 69–72 (1997)

    Google Scholar 

  6. Kryszkiewicz, M.: Properties of incomplete information systems in the framework of rough sets. In: [10], pp. 422–450

    Google Scholar 

  7. Latkowski, R.: On decomposition for incomplete data. Fundamenta Informaticae 54(1), 1–16 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Lim, T.: Missing covariate values and classification trees. Recursive-Partitioning.com (2000), http://www.recursive-partitioning.com/mv.shtml

  9. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1: Methodology and Applications. Physica-Verlag (1998)

    Google Scholar 

  11. Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Physica-Verlag (1998)

    Google Scholar 

  12. Skowron, A.: Boolean reasoning for decision rules generation. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 295–305. Springer, Heidelberg (1993)

    Google Scholar 

  13. Stefanowski, J.: On rough set based approaches to induction of decision rules. In: [10], pp. 500–529

    Google Scholar 

  14. Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. International Journal of Computational Intelligence 17(3), 545–566 (2001)

    Google Scholar 

  15. Ziarko, W., Yao, Y.Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)

    Google Scholar 

  16. The Rough Set Exploration System Homepage, http://logic.mimuw.edu.pl/~rses

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazan, J.G., Latkowski, R., Szczuka, M. (2006). Missing Template Decomposition Method and Its Implementation in Rough Set Exploration System. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_28

Download citation

  • DOI: https://doi.org/10.1007/11908029_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47693-1

  • Online ISBN: 978-3-540-49842-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics