Abstract
We describe a method of dealing with sets that contain missing information in case of classification task. The described method uses multi-stage scheme that induces and combines classifiers for complete parts of the original data. The principles of the proposed Missing Template Decomposition Method are presented together with general explanation of the implementation within the RSES framework. The introduced ideas are illustrated with an example of classification experiment on a real data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag (2000)
Bazan, J.G., Szczuka, M.S.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005)
Gediga, G., Düntsch, I.: Maximum consistency of incomplete data via non-invasive imputation. Artificial Intelligence Review 19(1), 93–107 (2003)
Grzymała-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: [15], pp. 378–385
Grzymała-Busse, J.W., Wang, A.Y.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proceedings of 5th Workshop on Rough Sets and Soft Computing (RSSC 1997) at the 3rd Joint Conference on Information Sciences, Research Triangle Park (NC, USA), pp. 69–72 (1997)
Kryszkiewicz, M.: Properties of incomplete information systems in the framework of rough sets. In: [10], pp. 422–450
Latkowski, R.: On decomposition for incomplete data. Fundamenta Informaticae 54(1), 1–16 (2003)
Lim, T.: Missing covariate values and classification trees. Recursive-Partitioning.com (2000), http://www.recursive-partitioning.com/mv.shtml
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1: Methodology and Applications. Physica-Verlag (1998)
Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Physica-Verlag (1998)
Skowron, A.: Boolean reasoning for decision rules generation. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 295–305. Springer, Heidelberg (1993)
Stefanowski, J.: On rough set based approaches to induction of decision rules. In: [10], pp. 500–529
Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. International Journal of Computational Intelligence 17(3), 545–566 (2001)
Ziarko, W., Yao, Y.Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)
The Rough Set Exploration System Homepage, http://logic.mimuw.edu.pl/~rses
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazan, J.G., Latkowski, R., Szczuka, M. (2006). Missing Template Decomposition Method and Its Implementation in Rough Set Exploration System. In: Greco, S., et al. Rough Sets and Current Trends in Computing. RSCTC 2006. Lecture Notes in Computer Science(), vol 4259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11908029_28
Download citation
DOI: https://doi.org/10.1007/11908029_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47693-1
Online ISBN: 978-3-540-49842-1
eBook Packages: Computer ScienceComputer Science (R0)