Nothing Special   »   [go: up one dir, main page]

Skip to main content

Selection Enthusiasm

  • Conference paper
Simulated Evolution and Learning (SEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4247))

Included in the following conference series:

Abstract

Selection Enthusiasm is a technique that allows weaker individuals in a population to compete with stronger individuals. In essence, each time a individual is selected its enthusiasm for being selected again is diminished relatively; the converse happens to the unselected individuals i.e. their raw fitness is adjusted. Therefore the fitness of an individual is based on two parameters; objectiveness and Selected Enthusiasm. The effects of such a technique are measured and results show that using selection enthusiasism yields fitter individuals and a more diverse population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)

    Article  Google Scholar 

  2. Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L.: Visualizing tree structures in genetic programming. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1652–1664. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Ekárt, A.: Genetic programming: new performance improving methods and applications. PhD thesis, Eötvös Lorand University (2001)

    Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Larrañaga, P., et al.: Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review 13, 129–170 (1999)

    Article  Google Scholar 

  7. Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  8. Czarn, A., MacNish, C., Kaipillil, V., Turlach, B., Gupta, R.: Statistical exploratory analysis of genetic algorithms. IEEE Trans. on Evolutionary Computation 8, 405–421 (2004)

    Article  Google Scholar 

  9. Reinelt, G.: Tsplib - a traveling salesman library. ORSA Journal on Computing 3, 376–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agrawal, A., Mitchell, I. (2006). Selection Enthusiasm. In: Wang, TD., et al. Simulated Evolution and Learning. SEAL 2006. Lecture Notes in Computer Science, vol 4247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11903697_57

Download citation

  • DOI: https://doi.org/10.1007/11903697_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47331-2

  • Online ISBN: 978-3-540-47332-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics