Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Succinctness of Nondeterminism

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4218))

Abstract

Much is known about the differences in expressiveness and succinctness between nondeterministic and deterministic automata on infinite words. Much less is known about the relative succinctness of the different classes of nondeterministic automata. For example, while the best translation from a nondeterministic Büchi automaton to a nondeterministic co-Büchi automaton is exponential, and involves determinization, no super-linear lower bound is known. This annoying situation, of not being able to use the power of nondeterminism, nor to show that it is powerless, is shared by more problems, with direct applications in formal verification.

In this paper we study a family of problems of this class. The problems originate from the study of the expressive power of deterministic Büchi automata: Landweber characterizes languages L ⊆ Σω that are recognizable by deterministic Büchi automata as those for which there is a regular language R ⊆ Σ* such that L is the limit of R; that is, wL iff w has infinitely many prefixes in R. Two other operators that induce a language of infinite words from a language of finite words are co-limit, where wL iff w has only finitely many prefixes in R, and persistent-limit, where wL iff almost all the prefixes of w are in R. Both co-limit and persistent-limit define languages that are recognizable by deterministic co-Büchi automata. They define them, however, by means of nondeterministic automata. While co-limit is associated with complementation, persistent-limit is associated with universality. For the three limit operators, the deterministic automata for R and L share the same structure. It is not clear, however, whether and how it is possible to relate nondeterministic automata for R and L, or to relate nondeterministic automata to which different limit operators are applied. In the paper, we show that the situation is involved: in some cases we are able to describe a polynomial translation, whereas in some we present an exponential lower bound. For example, going from a nondeterministic automaton for R to a nondeterministic automaton for its limit is polynomial, whereas going to a nondeterministic automaton for its persistent limit is exponential. Our results show that the contribution of nondeterminism to the succinctness of an automaton does depend upon its semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpern, B., Schneider, F.B.: Defining liveness. IPL 21, 181–185 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic: A new temporal property-specification logic. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 211–296. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arithmetic with integer and real variables. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 611–625. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. International Congress on Logic, Method, and Philosophy of Science. 1960, Stanford, pp. 1–12 (1962)

    Google Scholar 

  6. Clarke, E.M., Bierea, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)

    Article  MATH  Google Scholar 

  7. Accellera Organization Inc, http://www.accellera.org

  8. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω-automata vis-a-vis deterministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)

    Google Scholar 

  9. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 324–338. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. In: Proc. 11th LICS, DIMACS, pp. 322–333 (June 1996)

    Google Scholar 

  11. Kupferman, O., Vardi, M.Y.: On bounded specifications. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 24–38. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Kupferman, O., Vardi, M.Y.: From linear time to branching time. ACM TOCL 6(2), 273–294 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton University Press, Princeton (1994)

    Google Scholar 

  14. Landweber, L.H.: Decision problems for ω–automata. Mathematical Systems Theory 3, 376–384 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  15. Löding, C.: Optimal bounds for the transformation of omega-automata. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Löding, C.: Efficient minimization of deterministic weak omega-automata. IPL 79(3), 105–109 (2001)

    Article  MATH  Google Scholar 

  17. McNaughton, R.: Testing and generating infinite sequences by a finite automation. I& C 9, 521–530 (1966)

    MATH  MathSciNet  Google Scholar 

  18. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proc. 12th SSAT, pp. 188–191 (1971)

    Google Scholar 

  19. Michel, M.: Complementation is more difficult with automata on infinite words. CNET, Paris (1988)

    Google Scholar 

  20. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. TCS 32, 321–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Transaction of the AMS 141, 1–35 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  22. Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327 (1988)

    Google Scholar 

  23. Safra, S., Vardi, M.Y.: On ω-automata and temporal logic. In: Proc. 21st ACM STOC, pp. 127–137 (1989)

    Google Scholar 

  24. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of Computing 6, 495–511 (1994)

    Article  MATH  Google Scholar 

  25. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, pp. 133–191 (1990)

    Google Scholar 

  26. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I& C 115(1), 1–37 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aminof, B., Kupferman, O. (2006). On the Succinctness of Nondeterminism. In: Graf, S., Zhang, W. (eds) Automated Technology for Verification and Analysis. ATVA 2006. Lecture Notes in Computer Science, vol 4218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11901914_12

Download citation

  • DOI: https://doi.org/10.1007/11901914_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47237-7

  • Online ISBN: 978-3-540-47238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics