Abstract
We developed earlier version of realtime intrusion detection system using emperical kernel map combining least squares SVM(LS-SVM). I consists of two parts. One part is feature extraction by empirical kernel map and the other one is classification by LS-SVM. The main problem of earlier system is that it is not operated realtime because LS-SVM is executed in batch way. In this paper we propose an improved real time intrusion detection system incorporating earlier developed system with incremental LS-SVM. Applying the proposed system to KDD CUP 99 data, experimental results show that it has a remarkable feature feature extraction, classification performance and reducing detection time compared to earlier version of realtime ntrusion detection system.
This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A05-0909-A80405-05N1-00000A).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eskin, E.: Anomaly detection over noisy data using learned probability distribution. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 443–482 (2000)
Ghosh, A., Schwartzbard, A.: A Study in using neural networks for anomaly and misuse detection. In: Proceedings of the Eighth USENIX Security Symposium, pp. 443–482 (1999)
Lee, W., Stolfo, S.J., Mok, K.: A Data mining in workflow environments.: Experience in intrusion detection. In: Proceedings of the 1999 Conference on Knowledge Discovery and Data Mining (1999)
Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analysers. Neural Computation 11(2), 443–482 (1998)
Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AICHE Journal 37(2), 233–243 (1991)
Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks: Theory and Applications. John Wiley & Sons, Inc., New York (1996)
Kim, B.-J., Shim, J.Y., Hwang, C.H., Kim, I.-K., Song, J.H.: Incremental Feature Extraction Based on Empirical Kernel Map. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 440–444. Springer, Heidelberg (2003)
Softky, W.S., Kammen, D.M.: Correlation in high dimensional or asymmetric data set: Hebbian neuronal processing. Neural Networks 4, 337–348 (1991)
Gupta, H., Agrawal, A.K., Pruthi, T., Shekhar, C., Chellappa., R.: An Experimental Evaluation of Linear and Kernel-Based Methods for Face Recognition, accessible at http://citeseer.nj.nec.com
Liu, J., Chen, J.P., Jiang, S., Cheng, J.: Online LS-SVM for function estimation and classification. Journal of University of Science and Technology Beijing 10(5), 73–77 (2003)
Vapnik, V.N.: Statistical learning theory. John Wiley & Sons, New York (1998)
Hall, P., Marshall, D., Martin, R.: On-line eigenalysis for classification. In: British Machine Vision Conference, September 1998, vol. 1, pp. 286–295 (1998)
Winkeler, J., Manjunath, B.S., Chandrasekaran, S.: Subset selection for active object recognition. In: CVPR, vol. 2, pp. 511–516. IEEE Computer Society Press, Los Alamitos (1999)
Murakami, H., Kumar, B.V.K.V.: Efficient calculation of primary images from a set of images. IEEE PAMI 4(5), 511–515 (1982)
Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)
Tsuda, K.: Support vector classifier based on asymmetric kernel function. In: Proc. ESANN (1999)
Mika, S.: Kernel algorithms for nonlinear signal processing in feature spaces. Master’s thesis, Technical University of Berlin (November 1998)
Accessable at, http://kdd.ics.uci.edu/databases/kddcup99
Gestel, V., Suykens, T.J.A.K., Lanckriet, G., Lambrechts, D.M.A.B., Vandewalle, J.: A Bayesian Framework for Least Squares Support Vector Machine Classifiers. Internal Report 00-65, ESAT-SISTA, K.U. Leuven
Suykens, J.A.K., Vandewalle, J.: Multiclass Least Squares Support Vector Machines. In: Proc. International Joint Conference on Neural Networks (IJCNN 1999), Washington DC (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, BJ., Kim, I.K. (2006). Improved Realtime Intrusion Detection System. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_22
Download citation
DOI: https://doi.org/10.1007/11893295_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46484-6
Online ISBN: 978-3-540-46485-3
eBook Packages: Computer ScienceComputer Science (R0)