Abstract
A modal symbolic classifier for interval data is presented. The proposed method needs a previous pre-processing step to transform interval symbolic data into modal symbolic data. The presented classifier has then as input a set of vectors of weights. In the learning step, each group is also described by a vector of weight distributions obtained through a generalization tool. The allocation step uses the squared Euclidean distance to compare two modal descriptions. To show the usefulness of this method, examples with synthetic symbolic data sets are considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Appice, A., D’Amato, C., Esposito, F., Malerba, D.: Classification of symbolic objects: A lazy learning approach. Intelligent Data Analysis. Special issue on Symbolic and Spatial Data Analysis: Mining Complex Data Structures (accepted for publication, 2005)
Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Heidelberg (2000)
Ciampi, A., Diday, E., Lebbe, J., Perinel, E., Vignes, R.: Growing a tree classifier with imprecise data. Pattern Recognition Leters 21, 787–803 (2000)
D’Oliveira, S., De Carvalho, F.A.T., Souza, R.M.C.R.: Classification of sar images through a convex hull region oriented approach. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 769–774. Springer, Heidelberg (2004)
De Carvalho, F.A.T.: Histograms in symbolic data analysis. Annals of Operations Research 55, 299–322 (1995)
Ichino, M., Yaguchi, H., Diday, E.: A fuzzy symbolic pattern classifier. In: Diday, E., et al. (eds.) Ordinal and Symbolic Data Analysis, pp. 92–102. Springer, Heidelberg (1996)
Krichevsky, R.E., Trofimov, V.K.: The performance of universal enconding. IEEE Transactions Information Theory IT-27, 199–207 (1981)
Mali, K., Mitra, S.: Symbolic classification, clustering and fuzzy radial basis function network. Fyzzy sets and systems 152, 553–564 (2005)
Prudencio, R.B.C., Ludermir, T.B., De Carvalho, F.A.T.: A modal symbolic classifier for selecting time series models. Pattern Recognition Leters 25, 911–921 (2004)
Rossi, F., Conan-Guez, B.: Multi-layer perceptrom interval data. In: Bock, H.H. (ed.) Classification, Clustering and Data Analysis (IFCS 2002), pp. 427–434. Springer, Heidelberg (2002)
Souza, R.M.C.R., De Carvalho, F.A.T., Frery, A.C.: Symbolic approach to SAR image classification. In: IEEE International Geoscience and Remote Sensing Symposium, Hamburgo, pp. 1318–1320 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Silva, F.C.D., de A.T. de Carvalho, F., de Souza, R.M.C.R., Silva, J.Q. (2006). A Modal Symbolic Classifier for Interval Data. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_6
Download citation
DOI: https://doi.org/10.1007/11893257_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46481-5
Online ISBN: 978-3-540-46482-2
eBook Packages: Computer ScienceComputer Science (R0)