Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Suitable Neural Network to Detect Textile Defects

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4233))

Included in the following conference series:

Abstract

25% of the total revenue earning is achieved from Textile exports for some countries like Bangladesh. It is thus important to produce defect free high quality garment products. Inspection processes done on fabric industries are mostly manual hence time consuming. To reduce error on identifying fabric defects requires automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect detector. A multi-layer neural network is determined that best classifies the specific problems. To feed neural network the digital fabric images taken by a digital camera and converts the RGB images are first converted into binary images by restoration process and local threshold techniques, then three different features are determined for the actual input to the neural network, which are the area of the defects, number of the objects in a image and finally the shape factor. The develop system is able to identify two very commonly defects such as Holes and Scratches and other types of minor defects. The developed system is very suitable for Least Developed Countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ralló, M., Millán, M.S., Escofet, J.: Wavelet based techniques for textile inspection. Opt. Eng. 26(2), 838–844 (2003)

    Google Scholar 

  2. Meier, R.: Uster Fabriscan, The Intelligent Fabric Inspection, Online document (cited April 20, 2005), available HTTP: http://www.kotonline.com/english_pages/ana_basliklar/uster.asp

  3. Stojanovic, R., Mitropulos, P., Koulamas, C., Karayiannis, Y.A., Koubias, S., Papadopoulos, G.: Real-time Vision based System for Textile Fabric Inspection. Real-Time Imaging 7(6), 507–518 (2001)

    Article  MATH  Google Scholar 

  4. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing using MATLAB, pp. 76–104, 142–166, 404–407 (2005), ISBN 81-297-0515-X

    Google Scholar 

  5. Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design, part 2.5, 10.8 (2002), ISBN 981-240-376-0

    Google Scholar 

  6. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks (1993)

    Google Scholar 

  7. Neural Network Toolbox, MATLAB –The Language of Technical Conputing (CD Document), Version 7.0.0.19920(R14) (2004)

    Google Scholar 

  8. Batchelor, B.G., Whelan, P.F.: Selected Papers on Industrial Machine Vision Systems. SPIE Milestone Series (1994)

    Google Scholar 

  9. Newman, T.S., Jain, A.K.: A Survey of Automated Visual Inspection. Computer Vision and Image Understanding 61, 231–262 (1995)

    Article  Google Scholar 

  10. Zhang, H., Guan, J., Sun, G.C.: Artificial Neural Network-Based Image Pattern Recognition. In: ACM 30th Annual Southeast Conference (1992)

    Google Scholar 

  11. Ciamberlini, C., Francini, F., Longobardi, G., Sansoni, P., Tiribilli, B.: Defect detection in textured materials by optical filtering with structured detectors and selfadaptable masks. Opt. Eng. 35(3), 838–844 (1996)

    Article  Google Scholar 

  12. Kang, T.J., et al.: Automatic Recognition of Fabric Weave Patterns by Digital Image Analysis. Textile Res. J. 69(2), 77–83 (1999)

    Article  Google Scholar 

  13. Kang, T.J., et al.: Automatic Structure Analysis and Objective Evaluation of Woven Fabric Using Image Analysis. Textile Res. J. 71(3), 261–270 (2001)

    Google Scholar 

  14. Jasper, W.J., Garnier, S.J., Potlapalli, H.: Texture characterization and defect detection using adaptive wavelets. Opt. Eng. 35(11), 3140–3149 (1996)

    Article  Google Scholar 

  15. Jasper, W.J., Potlapalli, H.: Image analysis of mispicks in woven fabric. Text. Res.J. 65(1), 683–692 (1995)

    Article  Google Scholar 

  16. Escofet, J., Navarro, R., Millán, M.S., Pladellorens, J.: Detection of local defects in textile webs using Gabor filters. In: Réfrégier, P. (ed.) Vision Systems: New Image Processing Techniques. Proceedings SPIE, vol. 2785, pp. 163–170 (1996)

    Google Scholar 

  17. Escofet, J., Navarro, R., Millán, M.S., Pladellorens, J.: Detection of local defects in textile webs using Gabor filters. Opt. Eng. 37(8), 2297–2307 (1998)

    Article  Google Scholar 

  18. Millán, M.S., Escofet, J.: Fourier domain based angular correlation for quasiperiodic pattern recognition. Applications to web inspection. Appl. Opt. 35(31), 6253–6260 (1996)

    Article  Google Scholar 

  19. Martin, T., Jones, M., Edmison, J., Sheikh, T., Nakad, Z.: Modeling and Simulating Electronic Textile Applications, LCTES, USA (2004)

    Google Scholar 

  20. Dockery, A.: Automatic Fabric Inspection: Assessing the Current State of the Art, Online document (2001) (cited April 29, 2005)

    Google Scholar 

  21. Ji, Y., Chang, K.H., Hung, C.: Efficient Edge Detection and Object Segmentation Using Gabor Filters, ACMSE, USA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Islam, M.A., Akhter, S., Mursalin, T.E., Amin, M.A. (2006). A Suitable Neural Network to Detect Textile Defects. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893257_48

Download citation

  • DOI: https://doi.org/10.1007/11893257_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46481-5

  • Online ISBN: 978-3-540-46482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics