Abstract
Personalized web search incorporates an individual user’s interests when deciding relevant results to return. While, most web search engines are usually designed to serve all users, without considering the interests of individual users. We propose a method to (re)rank the results from a search engine using a learned user profile, called a user interest hierarchy (UIH), from web pages that are of interest to the user. The user’s interest in web pages will be determined implicitly, without directly asking the user. Experimental results indicate that our personalized ranking methods, when used with a popular search engine, can yield more potentially interesting web pages for individual users.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, C.R.: A Machine Learning Approach to Web Personalization. Ph.D. thesis. University of Washington, Department of Computer Science and Engineering (2002)
Ben Schafer, J., Konstan, J.A., Riedl, J.: Electronic commerce recommender applications. Journal of Data Mining and Knowledge Discovery 5, 115–152 (2001)
Bharat, K., Mihaila, G.A.: When experts agree: using non-affiliated experts to rank popular topics. In: Proc. of the 10th Intl. World Wide Web Conference (2001)
Brin, S., Motwani, R., Page, L., Winograd, T.: What can you do with a web in your pocket. In: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering (1998)
Cadez, I., Heckerman, D., Meek, C., Smyth, P., White, S.: Visualization of navigation pat-terns on web site using model based clustering. Technical Report MSR-TR-00-18, Microsoft Research, Microsoft Corporation, Redmond, WA (2000)
Chan, P.K.: A non-invasive learning approach to building web user profiles. In: KDD 1999 Workshop on Web Usage Analysis and User Profiling, 7–12 (1999)
Chen, L., Sycara, K.: WebMate: A personal agent for browsing and searching. In: Proc. of the 2nd Intl. conf. on Autonomous Agents, pp. 132–139 (1998)
Croft, W.B., Das, R.: Experiments with query acquisition and use in document retrieval systems. In: Proc. of 13th ACM SIGIR (1989)
Croft, W.B., Thompson, R.T.: I3R: A new approach to the design of document retrieval systems. Journal of the Americal Society for Information Science 38, 389–404 (1987)
Delaney, K.J.: Study questions whether google really is better. Wall Street Journal, May 25 (2004) B.1 http://proquest.umi.com/pqdweb?RQT=309&VInst=PROD&VName=PQD&VType=PQD&sid=5&index=45&SrchMode=1&Fmt=3&did=000000641646571&clientId=15106
Eirinaki, M., Lampos, C., Paulakis, S., Vazirgiannis, M.: Web personalization integrating content semantics and navigational patterns. In: Workshop on Web Information and Data Management, pp. 72–79 (2004)
Frakes, W.B., Baeza-Yates, R.: Information Retrieval: Data Structures and Algorithms. Prentice-Hall, Englewood Cliffs (1992)
Fu, X., Budzik, J., Hammond, K.J.: Mining navigation history for recommendation. In: Proc. 2000 Conference on Intelligent User Interfaces (2000)
Google co. (2004), http://www.google.com/
Grossman, D., Frieder, O., Holmes, D., Roberts, D.: Integrating structured data and text: A relational approach. Journal of the American Society for Information Science 48(2) (1997)
Harper, D.J.: Relevance Feedback in Document Retrieval Systems: An Evaluation of Probabilistic Strategies. Ph.D. Thesis, Computer Laboratory, University of Cambridge (1980)
Haveliwala, T.H.: Efficient computation of PageRank. Technical Report, Stanford University Database Group (1999), http://dbpubs.stanford.edu/pub/1999-31
Haveliwala, T.H.: Topic-sensitive PageRank. In: Proc. of the 11th Intl. World Wide Web Conference, Honolulu, Hawaii (2002)
Jeh, G., Widom, J.: Scaling personalized web search. In: Proc. of the 12th Intl. Conference on World Wide Web, Budapest, Hungary, pp. 20–24 (2003)
Kim, D., Atluri, V., Bieber, M., Adam, N., Yesha, Y.: A clickstream-based collaborative filtering personalization model: towards a better performance. In: Workshop on Web Information and Data Management (2004)
Kim, H., Chan, P.K.: Implicit indicator for interesting web pages. In: International Conference on Web Information Systems and Technologies, pp. 270–277 (2005)
Kim, H., Chan, P.K.: Identifying variable-length meaningful phrases with correlation functions. In: IEEE International Conference on Tools with Artificial Intelligence, pp. 30–38. IEEE press, Los Alamitos (2004)
Kim, H., Chan, P.K.: Learning implicit user interest hierarchy for context in personalization. In: International Conference on Intelligent User Interfaces, pp. 101–108 (2003)
Li, W.S., Vu, Q., Agrawal, D., Hara, Y., Takano, H.: PowerBookmarks: A System for personalizable web information organization, sharing, and management. In: Proc. of the 8th Intl. World Wide Web Conference, Toronto, Canada (1999)
Liu, F., Yu, C., Meng, W.: Personalized web search by mapping user queries to categories. In: CIKM 2002. ACM Press, Virginia (2002)
Maarek, Y.S., Ben-Shaul, I.Z.: Automatically organizing bookmarks per contents. In: Proc. 5th International World Wide Web Conference (1996)
Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)
Mobasher, B., Cooley, R., Srivastava, J.: Creating adaptive web sites through usage-based clustering of URLs. In: Proc. 1999 IEEE Knowledge and Data Engineering Exchange Workshop, pp. 19–25 (1999)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical Report, Stanford University Database Group (1998), http://citeseer.nj.nec.com/368196.html
Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997)
Salton, G., Waldstein, R.G.: Term relevance weights in online information retrieval. Information Processing and Management 14, 29–35 (1978)
Shahabi, C., Banaei-Kashani, F.: Efficient and anonymous web-usage mining for web personalization. INFORMS Journal on Computing-Special Issue on Data Mining 15(2) (2003)
Stefani, A., Strapparava, C.: Exploiting nlp techniques to build user model for web sites: The use of worldnet in SiteIF project. In: Proc. 2nd Workshop on Adaptive Systems and User Modeling on the WWW (1999)
Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests and activities. In: Proc. SIGIR (2005)
van Rijsbergen, C.J.: Information Retrieval, pp. 68–176. Butterworths, London (1979)
Vivisimo co. (2004), http://www.vivisimo.com
Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval. Information Processing & Management 22(6), 465–476 (1986)
Wexelblat, A., Maes, P.: Footprints: History-rich web browsing. In: Proc. Conference on Computer-Assisted Information Retrieval (RIAO), pp. 75–84 (1997)
Yan, T.W., Jacobsen, M., Garcia-Molina, H., Dayal, U.: From user access patterns to dynamic hypertext linking. In: Proc. 5th International World Wide Web Conference (1996)
Zukerman, I., Albrecht, D.W., Nicholson, A.E.: Predicting users’ requests on the WWW. In: Proc. of the 7th Intel. Conference on User Modeling (UM), Banff, Canada, pp. 275–284 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, Hr., Chan, P.K. (2006). Personalized Search Results with User Interest Hierarchies Learnt from Bookmarks. In: Nasraoui, O., Zaïane, O., Spiliopoulou, M., Mobasher, B., Masand, B., Yu, P.S. (eds) Advances in Web Mining and Web Usage Analysis. WebKDD 2005. Lecture Notes in Computer Science(), vol 4198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11891321_9
Download citation
DOI: https://doi.org/10.1007/11891321_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46346-7
Online ISBN: 978-3-540-46348-1
eBook Packages: Computer ScienceComputer Science (R0)