Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4123))

Abstract

Let \({\cal H}(n)=\{0,1\}^n\) denote the binary Hamming space with the Hamming distance d H . The Hamming weight is denoted by wt H . Given integers \(l\geq 1,\ 1\leq\delta <n\), let \({\cal A\subset H}(n)\) satisfy the Condition (D): for every subset \(A\subset{\cal A}\) with |A|=l + 1 there exist two distinct points a,bA with d H (a,b) ≤δ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kleitman, D.J.: On a combinatorial conjecture of Erdős. J. Combin. Theory 1, 209–214 (1996)

    MathSciNet  Google Scholar 

  2. Ahlswede, R., Khachatrian, L.H.: The complete intersection theorem for systems of finite sets. European J. Combin. 18, 125–136 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ahlswede, R., Khachatrian, L.H.: The diametric theorem in Hamming spaces – optimal anticodes. Advances in Applied Mathematics 20, 429–449 (1997)

    Article  MathSciNet  Google Scholar 

  4. Ahlswede, R., Aydinian, H., Khachatrian, L.H.: Perfect codes and related concepts. Designs, Codes and Cryptography 22, 221–237 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aydinian, H. (2006). Generalized Anticodes in Hamming Spaces. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_71

Download citation

  • DOI: https://doi.org/10.1007/11889342_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46244-6

  • Online ISBN: 978-3-540-46245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics