Abstract
Let \({\cal H}(n)=\{0,1\}^n\) denote the binary Hamming space with the Hamming distance d H . The Hamming weight is denoted by wt H . Given integers \(l\geq 1,\ 1\leq\delta <n\), let \({\cal A\subset H}(n)\) satisfy the Condition (D): for every subset \(A\subset{\cal A}\) with |A|=l + 1 there exist two distinct points a,b ∈A with d H (a,b) ≤δ.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kleitman, D.J.: On a combinatorial conjecture of Erdős. J. Combin. Theory 1, 209–214 (1996)
Ahlswede, R., Khachatrian, L.H.: The complete intersection theorem for systems of finite sets. European J. Combin. 18, 125–136 (1997)
Ahlswede, R., Khachatrian, L.H.: The diametric theorem in Hamming spaces – optimal anticodes. Advances in Applied Mathematics 20, 429–449 (1997)
Ahlswede, R., Aydinian, H., Khachatrian, L.H.: Perfect codes and related concepts. Designs, Codes and Cryptography 22, 221–237 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Aydinian, H. (2006). Generalized Anticodes in Hamming Spaces. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_71
Download citation
DOI: https://doi.org/10.1007/11889342_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46244-6
Online ISBN: 978-3-540-46245-3
eBook Packages: Computer ScienceComputer Science (R0)