Abstract
Symmetry breaking by dominance detection (SBDD) [4,6,1,12], has proven to excel on problems that contain large symmetry groups. The core task of SBDD is the dominance detection algorithm. The first automated dominance detection algorithms were based on group theory [7], while the first provably polynomial-time dominance checkers for specific types of value symmetry were devised in [15]. This work was later extended to tackle any kind of value symmetry in polynomial time [13]. Based on these results, for specific “piecewise” symmetric problems, [14] showed that breaking variable and value symmetry can be broken simultaneously in polynomial time. The method was named structural symmetry breaking (SSB) and is based on the structural abstraction of a given partial assignment of values to variables.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barnier, N., Brisset, P.: Solving the kirkman’s schoolgirl problem in a few seconds. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 477–491. Springer, Heidelberg (2002)
Brown, C., Finkelstein, L., Purdom Jr., P.: Backtrack searching in the presence of symmetry. In: Proceedings of AAECC-6, pp. 99–110 (1988)
Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for search problems. In: Proceedings of KR 1996, pp. 149–159 (1996)
Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)
Flener, P., et al.: Breaking row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)
Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)
Gent, I.P., et al.: Generic SBDD using computational group theory. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 333–347. Springer, Heidelberg (2003)
Gent, I., Smith, B.: Symmetry breaking in constraint programming. In: Proceedings of ECAI 2000, pp. 599–603 (2000)
Gomes, C.P., Selman, B., Crato, N.: Heavy-Tailed Distributions in Combinatorial Search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)
Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Policies. In: Proceedings of AAAI 2002, pp. 674–682 (2002)
Prestwich, S., Roli, A.: Symmetry Breaking and Local Search Spaces. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 273–287. Springer, Heidelberg (2005)
Puget, J.-F.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)
Roney-Dougal, C., Gent, I., Kelsey, T., Linton, S.: Tractable symmetry breaking using restricted search trees. In: Proceedings of ECAI 2004, pp. 211–215 (2004)
Sellmann, M., Van Hentenryck, P.: Structural Symmetry Breaking. In: Proceedings of IJCAI 2005, pp. 298–303 (2005)
Van Hentenryck, P., Flener, P., Pearson, J., Agren, M.: Tractable symmetry breaking for CSPs with interchangeable values. In: Proceedings of IJCAI 2003, pp. 277–282 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heller, D.S., Sellmann, M. (2006). Dynamic Symmetry Breaking Restarted. In: Benhamou, F. (eds) Principles and Practice of Constraint Programming - CP 2006. CP 2006. Lecture Notes in Computer Science, vol 4204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889205_58
Download citation
DOI: https://doi.org/10.1007/11889205_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46267-5
Online ISBN: 978-3-540-46268-2
eBook Packages: Computer ScienceComputer Science (R0)