Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parameterized Semi-supervised Classification Based on Support Vector for Multi-relational Data

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4221))

Included in the following conference series:

  • 1323 Accesses

Abstract

A Parameterized Semi-supervised Classification algorithm based on Support Vector (PSCSV) for multi-relational data is presented in this paper. PSCSV produces class contours with support vectors, and further extracts center information of classes. Data is labeled according to its affinity to class centers. A novel Kernel function encoded in PSCSV is defined for multi-relational version and parameterized by supervisory information. Another point is the self learning of penalty parameter and Kernel scale parameter in the support-vector-based procedures, which eliminates the need to search parameter spaces. Experiments on real datasets demonstrate performance and efficiency of PSCSV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ďzeroski, S.: Multi-Relational Data Mining: An Introduction. ACM SIGKDD Explorations Newsletter 5(1) (2003)

    Google Scholar 

  2. Ben-Hur, A., Horn, D., Siegelmann, H.T.: Support Vector Clustering. Journal of Machine Learning Research, 125–137 (2001)

    Google Scholar 

  3. Kecman, V.: Learning and Soft Computing, Support Vector machines, Neural Networks and Fuzzy Logic Models. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Wang, L.P. (ed.): Support Vector Machines: Theory and Application. Springer, Berlin, Heidelberg, New York (2005)

    Google Scholar 

  5. Xing, E., Ng, A., Jordan, M.: Distance Metric Learning, with Application to Clustering with Side-information. Advances in Neural Information Processing Systems 15, 505–512 (2003)

    Google Scholar 

  6. Jong, K., Marchiori, E., van der Vaart, A.: Finding Clusters using Support Vector Classifiers. In: ESANN 2003 proceedings - European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 223–228 (2003)

    Google Scholar 

  7. Haussler, D.: Convolution Kernels on Discrete Structures. Technical report, Department of Computer Science, University of California, Santa Cruz (1999)

    Google Scholar 

  8. http://www.uncc.edu/knowledgediscovery

  9. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31–71 (1997)

    Article  MATH  Google Scholar 

  10. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/mutagenesis.html

  11. Bloedorn, E., Michalski, R.: Data driven constructive induction. IEEE Intelligent Systems 13(2), 30–37 (1998)

    Article  Google Scholar 

  12. Gaertner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Sammut, C. (ed.) ICML 2002, Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  13. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans.on Neural Networks 13(3), 780–784 (2002)

    Article  Google Scholar 

  14. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ping, L., Chun-Guang, Z. (2006). Parameterized Semi-supervised Classification Based on Support Vector for Multi-relational Data. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_10

Download citation

  • DOI: https://doi.org/10.1007/11881070_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45901-9

  • Online ISBN: 978-3-540-45902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics