Abstract
A Parameterized Semi-supervised Classification algorithm based on Support Vector (PSCSV) for multi-relational data is presented in this paper. PSCSV produces class contours with support vectors, and further extracts center information of classes. Data is labeled according to its affinity to class centers. A novel Kernel function encoded in PSCSV is defined for multi-relational version and parameterized by supervisory information. Another point is the self learning of penalty parameter and Kernel scale parameter in the support-vector-based procedures, which eliminates the need to search parameter spaces. Experiments on real datasets demonstrate performance and efficiency of PSCSV.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ďzeroski, S.: Multi-Relational Data Mining: An Introduction. ACM SIGKDD Explorations Newsletter 5(1) (2003)
Ben-Hur, A., Horn, D., Siegelmann, H.T.: Support Vector Clustering. Journal of Machine Learning Research, 125–137 (2001)
Kecman, V.: Learning and Soft Computing, Support Vector machines, Neural Networks and Fuzzy Logic Models. The MIT Press, Cambridge (2001)
Wang, L.P. (ed.): Support Vector Machines: Theory and Application. Springer, Berlin, Heidelberg, New York (2005)
Xing, E., Ng, A., Jordan, M.: Distance Metric Learning, with Application to Clustering with Side-information. Advances in Neural Information Processing Systems 15, 505–512 (2003)
Jong, K., Marchiori, E., van der Vaart, A.: Finding Clusters using Support Vector Classifiers. In: ESANN 2003 proceedings - European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 223–228 (2003)
Haussler, D.: Convolution Kernels on Discrete Structures. Technical report, Department of Computer Science, University of California, Santa Cruz (1999)
Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31–71 (1997)
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/mutagenesis.html
Bloedorn, E., Michalski, R.: Data driven constructive induction. IEEE Intelligent Systems 13(2), 30–37 (1998)
Gaertner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Sammut, C. (ed.) ICML 2002, Morgan Kaufmann, San Francisco (2002)
Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans.on Neural Networks 13(3), 780–784 (2002)
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ping, L., Chun-Guang, Z. (2006). Parameterized Semi-supervised Classification Based on Support Vector for Multi-relational Data. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_10
Download citation
DOI: https://doi.org/10.1007/11881070_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45901-9
Online ISBN: 978-3-540-45902-6
eBook Packages: Computer ScienceComputer Science (R0)