Abstract
Fuzziness is an internal property of spatial objects. How to model fuzziness of a spatial object is a main task of next generation GIS. This paper proposes basic fuzzy spatial object types based on fuzzy topology. These object types are the natural extension of current non-fuzzy spatial object types. A fuzzy cell complex structure is defined for modeling fuzzy regions, lines and points. Furthermore, fuzzy topological relations between these fuzzy spatial objects are formalized based on the 9-intersection approach. This model can be implemented for GIS applications due to its scientific theory basis.
This research is funded by Natural Science Foundation of China (Project No. 40571127) and Key Laboratory of Geo-informatics of SBSM, Chinese Academy of Surveying and Mapping.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burrough, P.A.: Natural Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 1–8. Taylor & Francis, London (1996)
Chang, C.L.: Fuzzy Topological Space. Journal of Mathematical Analysis and Applications 24, 182–190 (1968)
Cheng, T., Molenaar, M., Bouloucos, T.: Identification of Fuzzy Objects from Field Objects. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 241–259. Springer, Heidelberg (1997)
Cheng, T., Molenaar, M., Lin, H.: Formalizing Fuzzy Objects from Uncertain Classification Results. International Journal of Geographical Information Science 15(1), 27–42 (2001)
Clementini, E., Di Felice, P.: An Algebraic Model for Spatial Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 155–169. Taylor & Francis, London (1996)
Cohn, A.G., Gotts, N.M.: The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 171–187. Taylor & Francis, London (1996)
Egenhofer, M.J., Franzosa, R.: Point-set Topological Spatial Relations. International Journal of Geographic Information Systems 5(2), 161–174 (1991)
Egenhofer, M.J., Sharma, J.: Assessing the Consistency of Complete and Incomplete Topological Information. Geographic Systems 1, 47–68 (1993)
Fisher, P.: Boolean and Fuzzy Region. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 87–94. Taylor & Francis, London (1996)
Hatcher, A.: Algebraic Topology. Cambridge University Press, London (2002)
Liu, Y.M., Luo, M.K.: Fuzzy Topology. World Scientific, Singapore (1997)
Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, California (1984)
Schneider, M.: Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 330–351. Springer, Heidelberg (1999)
Tang, X.M., Kainz, W.: Analysis of Topological Relations between Fuzzy Regions in General Fuzzy Topological Space. In: The Proceedings of Canadian Geomatics Conference, Ottawa, Canada, pp. 114–129 (2002)
Tang, X.M., Kainz, W., Fang, Y.: Reasoning about Changes of Land Cover Objects with Fuzzy Settings. International Journal of Remote Sensing 26(14), 3025–3046 (2005)
Tang, X.M., Fang, Y., Kainz, W.: Topological Relations between Fuzzy Regions in a Special Fuzzy Topological Space. Geography and Geo-information Science (in Chinese) 19(2), 1–10 (2003)
Tang, X.M., Fang, Y., Kainz, W.: Topological Matrices for Topological Relations between Fuzzy Regions. In: The Proceedings of the 4th International Symposium on Multispectral Image Processing and Pattern Recognition (SPIE), Wuhan, China (2005)
Tang, X.M., Kainz, W., Fang, Y.: Modeling of Fuzzy Spatial Objects and their Topological Relations. In: Shi, W.Z., Goodchild, M.F., Fisher, P. (eds.) Proceedings of the 2nd Symposium on Spatial Data Quality (SDQ), Hong Kong, pp. 34–50 (2003)
Warren, H.R.: Boundary of a Fuzzy Set. Indiana University Mathematics Journal 26(2), 191–197 (1977)
Wong, C.K.: Fuzzy Points and Local Properties of Fuzzy Topology. Journal of Mathematical Analysis and Applications 46, 316–328 (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tang, X., Fang, Y., Kainz, W. (2006). Fuzzy Topological Relations Between Fuzzy Spatial Objects. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_37
Download citation
DOI: https://doi.org/10.1007/11881599_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45916-3
Online ISBN: 978-3-540-45917-0
eBook Packages: Computer ScienceComputer Science (R0)