Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Topological Relations Between Fuzzy Spatial Objects

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4223))

Included in the following conference series:

Abstract

Fuzziness is an internal property of spatial objects. How to model fuzziness of a spatial object is a main task of next generation GIS. This paper proposes basic fuzzy spatial object types based on fuzzy topology. These object types are the natural extension of current non-fuzzy spatial object types. A fuzzy cell complex structure is defined for modeling fuzzy regions, lines and points. Furthermore, fuzzy topological relations between these fuzzy spatial objects are formalized based on the 9-intersection approach. This model can be implemented for GIS applications due to its scientific theory basis.

This research is funded by Natural Science Foundation of China (Project No. 40571127) and Key Laboratory of Geo-informatics of SBSM, Chinese Academy of Surveying and Mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burrough, P.A.: Natural Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 1–8. Taylor & Francis, London (1996)

    Google Scholar 

  2. Chang, C.L.: Fuzzy Topological Space. Journal of Mathematical Analysis and Applications 24, 182–190 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheng, T., Molenaar, M., Bouloucos, T.: Identification of Fuzzy Objects from Field Objects. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 241–259. Springer, Heidelberg (1997)

    Google Scholar 

  4. Cheng, T., Molenaar, M., Lin, H.: Formalizing Fuzzy Objects from Uncertain Classification Results. International Journal of Geographical Information Science 15(1), 27–42 (2001)

    Article  Google Scholar 

  5. Clementini, E., Di Felice, P.: An Algebraic Model for Spatial Objects with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 155–169. Taylor & Francis, London (1996)

    Google Scholar 

  6. Cohn, A.G., Gotts, N.M.: The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 171–187. Taylor & Francis, London (1996)

    Google Scholar 

  7. Egenhofer, M.J., Franzosa, R.: Point-set Topological Spatial Relations. International Journal of Geographic Information Systems 5(2), 161–174 (1991)

    Article  Google Scholar 

  8. Egenhofer, M.J., Sharma, J.: Assessing the Consistency of Complete and Incomplete Topological Information. Geographic Systems 1, 47–68 (1993)

    MATH  Google Scholar 

  9. Fisher, P.: Boolean and Fuzzy Region. In: Burrough, P., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 87–94. Taylor & Francis, London (1996)

    Google Scholar 

  10. Hatcher, A.: Algebraic Topology. Cambridge University Press, London (2002)

    MATH  Google Scholar 

  11. Liu, Y.M., Luo, M.K.: Fuzzy Topology. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  12. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, California (1984)

    MATH  Google Scholar 

  13. Schneider, M.: Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 330–351. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Tang, X.M., Kainz, W.: Analysis of Topological Relations between Fuzzy Regions in General Fuzzy Topological Space. In: The Proceedings of Canadian Geomatics Conference, Ottawa, Canada, pp. 114–129 (2002)

    Google Scholar 

  15. Tang, X.M., Kainz, W., Fang, Y.: Reasoning about Changes of Land Cover Objects with Fuzzy Settings. International Journal of Remote Sensing 26(14), 3025–3046 (2005)

    Article  Google Scholar 

  16. Tang, X.M., Fang, Y., Kainz, W.: Topological Relations between Fuzzy Regions in a Special Fuzzy Topological Space. Geography and Geo-information Science (in Chinese) 19(2), 1–10 (2003)

    MATH  Google Scholar 

  17. Tang, X.M., Fang, Y., Kainz, W.: Topological Matrices for Topological Relations between Fuzzy Regions. In: The Proceedings of the 4th International Symposium on Multispectral Image Processing and Pattern Recognition (SPIE), Wuhan, China (2005)

    Google Scholar 

  18. Tang, X.M., Kainz, W., Fang, Y.: Modeling of Fuzzy Spatial Objects and their Topological Relations. In: Shi, W.Z., Goodchild, M.F., Fisher, P. (eds.) Proceedings of the 2nd Symposium on Spatial Data Quality (SDQ), Hong Kong, pp. 34–50 (2003)

    Google Scholar 

  19. Warren, H.R.: Boundary of a Fuzzy Set. Indiana University Mathematics Journal 26(2), 191–197 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wong, C.K.: Fuzzy Points and Local Properties of Fuzzy Topology. Journal of Mathematical Analysis and Applications 46, 316–328 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, X., Fang, Y., Kainz, W. (2006). Fuzzy Topological Relations Between Fuzzy Spatial Objects. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_37

Download citation

  • DOI: https://doi.org/10.1007/11881599_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45916-3

  • Online ISBN: 978-3-540-45917-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics