Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Rough Fuzzy Set Algebras

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4223))

Included in the following conference series:

Abstract

A rough fuzzy set is a pair of fuzzy sets resulting from the approximation of a fuzzy set in a crisp approximation space. A rough fuzzy set algebra is a fuzzy set algebra with added dual pair of rough fuzzy approximation operators. In this paper, structures of rough fuzzy set algebras are studied. It is proved that if a system \(({\cal F}(U), \cap, \cup, \sim, L, H)\) is a (a serial, a reflexive, a symmetric, a transitive, an Euclidean, a Pawlak, respectively) rough fuzzy set algebra then the derived system \(({\cal F}(U), \cap, \cup, \sim, LL, HH)\) is a (a serial, a reflexive, a symmetric, a transitive, an Euclidean, a Pawlak, respectively) rough fuzzy set algebra. Properties of rough fuzzy approximation operators in different types of rough fuzzy set algebras are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boixader, D., Jacas, J., Recasens, J.: Upper and lower approximations of fuzzy sets. International Journal of General Systems 29, 555–568 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chuchro, M.: On rough sets in topological Boolean algebras. In: Ziarko, W. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 157–160. Springer, Heidelberg (1994)

    Google Scholar 

  3. Comer, S.: An algebraic approach to the approximation of information. Fundamenta Informaticae 14, 492–502 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–209 (1990)

    Article  MATH  Google Scholar 

  5. Inuiguchi, M.: Generalizations of rough sets: from crisp to fuzzy cases. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 26–37. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Lin, T.Y., Liu, Q.: Rough approximate operators: axiomatic rough set theory. In: Ziarko, W. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 256–260. Springer, Heidelberg (1994)

    Google Scholar 

  7. Mi, J.-S., Leung, Y., Wu, W.-Z.: An uncertainty measure in partition-based fuzzy rough sets. International Journal of General Systems 34, 77–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mi, J.-S., Zhang, W.-X.: An axiomatic characterization of a fuzzy generalization of rough sets. Information Sciences 160, 235–249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems 100, 327–342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nanda, S., Majumda, S.: Fuzzy rough sets. Fuzzy Sets and Systems 45, 157–160 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)

    MATH  Google Scholar 

  12. Pei, D.W., Xu, Z.-B.: Rough set models on two universes. International Journal of General Systems 33, 569–581 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pomykala, J.A.: Approximation operations in approximation space. Bulletin of the Polish Academy of Sciences: Mathematics 35, 653–662 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 331–336 (2000)

    Article  Google Scholar 

  16. Vakarelov, D.: A modal logic for similarity relations in Pawlak knowledge representation systems. Fundamenta Informaticae 15, 61–79 (1991)

    MATH  MathSciNet  Google Scholar 

  17. Wiweger, R.: On topological rough sets. Bulletin of Polish Academy of Sciences: Mathematics 37, 89–93 (1989)

    MATH  MathSciNet  Google Scholar 

  18. Wu, W.-Z.: A study on relationship between fuzzy rough approximation operators and fuzzy topological spaces. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 167–174. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Wu, W.-Z., Leung, Y., Mi, J.-S.: On characterizations of (\({\cal I, T}\))-fuzzy rough approximation operators. Fuzzy Sets and Systems 154, 76–102 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, W.-Z., Leung, Y., Zhang, W.-X.: Connections between rough set theory and Dempster-Shafer theory of evidence. International Journal of General Systems 31, 405–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wu, W.-Z., Mi, J.-S., Zhang, W.-X.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wu, W.-Z., Zhang, W.-X.: Neighborhood operator systems and approximations. Information Sciences 144, 201–217 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu, W.-Z., Zhang, W.-X.: Constructive and axiomatic approaches of fuzzy approximation operators. Information Sciences 159, 233–254 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 291–317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yao, Y.Y.: Combination of rough and fuzzy sets based on α-level sets. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 301–321. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  26. Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Journal of Information Sciences 109, 21–47 (1998)

    Article  MATH  Google Scholar 

  27. Yao, Y.Y.: Generalized rough set model. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1. Methodology and Applications, pp. 286–318. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  28. Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent Automation and Soft Computing: An International Journal 2, 103–120 (1996)

    Google Scholar 

  30. Yao, Y.Y., Lingras, P.J.: Interpretations of belief functions in the theory of rough sets. Information Sciences 104, 81–106 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, WZ., Xu, YH. (2006). On Rough Fuzzy Set Algebras. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_29

Download citation

  • DOI: https://doi.org/10.1007/11881599_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45916-3

  • Online ISBN: 978-3-540-45917-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics