Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel-Structure Fuzzy System for Sunspot Cycle Prediction in the Railway Systems

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4223))

Included in the following conference series:

  • 1684 Accesses

Abstract

This paper presents a parallel-structure fuzzy system (PSFS) for prediction of sunspot cycle in the railway communication and power systems based on smoothed sunspot number time series. The PSFS consists of a multiple number of fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts the same future data independently based on its past time series data with different embedding dimension and time delay. According to the embedding dimension and the time delay, the component fuzzy system takes various input-output pairs. The PSFS determines the final predicted value as an average of all the outputs of the component fuzzy systems excluding the predicted data with the minimum and the maximum values in order to reduce error accumulation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weigend, A.S., Gershenfeld, N.A. (eds.): Time Series Prediction: Forecasting the Future and Understanding the Past, pp. 175–193. Addison-Wesley, Reading (1994)

    Google Scholar 

  2. Kim, M.S., Lee, H.S., You, C.H., Chung, C.S.: Chaotic Time Series Prediction using PSFS2. In: 41st Annual Conference on SICE (August 2002)

    Google Scholar 

  3. Thompson, R.J.: A Technique for Predicting the Amplitude of the Solar Cycle. Solar Physics 148 (1993)

    Google Scholar 

  4. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: A Synthesis of Solar Cycle Prediction Techniques. Journal Geophys. Res. 104(A10) (1999)

    Google Scholar 

  5. Li, K.J., Yun, H.S., Liang, H.F., Gu, X.M.: Solar activity in Extended Cycles. Journal Geophys. Res. 107(A7) (2002)

    Google Scholar 

  6. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science, Amsterdam (1985)

    Google Scholar 

  7. Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. of Man Machine Studies 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  8. Casdagal, M.: Nonlinear Prediction of Chaotic Time Series. Physica D, 335–356 (1989)

    Google Scholar 

  9. Lowe, D., Webb, A.R.: Time Series Prediction by Adaptive Networks: A Dynamical Systems Perspective. In: Vemuri, V.R., Rogers, R.D. (eds.) Artificial Neural Networks, Forecasting Time Series, pp. 12–19. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  10. Broomhead, D.S., Lowe, D.: Multi-variable Functional Interpolation and Adaptive Networks. Complex Systems, 262–303 (1988)

    Google Scholar 

  11. Kim, M.-S., Kong, S.-G.: Time Series Prediction using the Parallel-Structure Fuzzy System. In: 1999 IEEE Int. Fuzzy Systems Conference Proceedings, August 1999, vol. 2, pp. 934–938 (1999)

    Google Scholar 

  12. Kim, M.S., Kong, S.G.: Parallel Structure Fuzzy Systems for Time Series Prediction. Int. Journal of Fuzzy Systems 3(1) (March 2001)

    Google Scholar 

  13. Jang, J.-S.R., Sun, C.-T.: Neuro-Fuzzy Modeling and Control. Proceedings of the IEEE (March 1995)

    Google Scholar 

  14. Chiu, S.: Fuzzy Model Identification Based on Cluster Estimation. Journal of Intelligent & Fuzzy Systems 2(3) (September 1994)

    Google Scholar 

  15. Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control, pp. 246–264. John Wiley & Sons, Chichester (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, MS. (2006). Parallel-Structure Fuzzy System for Sunspot Cycle Prediction in the Railway Systems. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2006. Lecture Notes in Computer Science(), vol 4223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881599_114

Download citation

  • DOI: https://doi.org/10.1007/11881599_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45916-3

  • Online ISBN: 978-3-540-45917-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics