Abstract
In order to provide communication between the deaf-dumb people and the hearing people, a two-stage system translating Turkish Sign Language into Turkish is developed by using vision based approach. Hidden Markov models are utilized to determine the global feature group in the dynamic gesture recognition stage, and k nearest neighbor algorithm is used to compare the local features in the static gesture recognition stage. The system can perform person dependent recognition of 172 isolated signs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Assan, M., Grobel, K.: Video Based Sign Language Recognition using Hidden Markov Models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, p. 97. Springer, Heidelberg (1998)
Fang, G., Gao, W., Zhao, D.: Large Vocabulary Sign Language Recognition Based on Fuzzy Decision Trees. IEEE Transactions on Systems, Man, and Cybernetics 34(2) (2004)
Starner, T.: Visual Recognition of American Sign Language Using Hidden Markov Models. MS Thesis, Massachusetts Institute of Technology Media Laboratory (1995)
Modler, P., Myatt, T.: A Video System for Recognizing Gestures by Artificial Neural Networks for Expressive Musical Control. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 541–548. Springer, Heidelberg (2004)
Charayaphan, C., Marble, A.: Image processing system for interpreting motion in American Sign Language. Journal of Biomedical Engineering 14, 419–425 (1992)
Kapuscinski, T., Wysocki, M.: Vision-based recognition of Polish Sign Language. In: Methods in Artificial Intelligence (2003)
Sarfraz, M., Yusuf, A.S., Zeeshan, M.: A System for Sign Language Recognition. Using Fuzzy Object Similarity Tracking. In: Proc. IEEE 9th International Conference on Inf. Visualization (2005)
Haberdar, H., Albayrak, S.: Real Time Isolated Turkish Sign Language Recognition from Video Using Hidden Markov Models with Global Features. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 677–687. Springer, Heidelberg (2005)
Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face Detection in Color Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(5), 696–706 (2002)
Özyürek, A., İlkbaşaran, D., Arık, E.: Turkish Sign Language. Koç University (2004), http://turkisaretdili.ku.edu.tr
Turkish Sign Language Manual for Adults. Turkish Ministry of Education, Ankara (1995)
Haberdar, H.: Real Time Turkish Sign Language Recognition System From Video Using Hidden Markov Models. MS Thesis, Yıldız Technical University, Computer Science and Engineering Department (2005)
Alpaydın, E.: Introduction to Machine Learning, pp. 305–326. The Massachusetts Institute of Technology Press (2004)
Young, S.: The Hidden Markov Model Toolkit Book Version 3.2.1. Cambridge University Engineering Department. Speech Group and Entropic Research Lab. Inc., Washington DC (2002)
Bao, Y., Ishii, N., Du, X.: Combining Multiple k-Nearest Neighbor Classifiers Using Different Distance Functions. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 634–641. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haberdar, H., Albayrak, S. (2006). A Two-Stage Visual Turkish Sign Language Recognition System Based on Global and Local Features. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_5
Download citation
DOI: https://doi.org/10.1007/11875604_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45764-0
Online ISBN: 978-3-540-45766-4
eBook Packages: Computer ScienceComputer Science (R0)