Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Two-Stage Visual Turkish Sign Language Recognition System Based on Global and Local Features

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4203))

Included in the following conference series:

Abstract

In order to provide communication between the deaf-dumb people and the hearing people, a two-stage system translating Turkish Sign Language into Turkish is developed by using vision based approach. Hidden Markov models are utilized to determine the global feature group in the dynamic gesture recognition stage, and k nearest neighbor algorithm is used to compare the local features in the static gesture recognition stage. The system can perform person dependent recognition of 172 isolated signs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Assan, M., Grobel, K.: Video Based Sign Language Recognition using Hidden Markov Models. In: Wachsmuth, I., Fröhlich, M. (eds.) GW 1997. LNCS (LNAI), vol. 1371, p. 97. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Fang, G., Gao, W., Zhao, D.: Large Vocabulary Sign Language Recognition Based on Fuzzy Decision Trees. IEEE Transactions on Systems, Man, and Cybernetics 34(2) (2004)

    Google Scholar 

  3. Starner, T.: Visual Recognition of American Sign Language Using Hidden Markov Models. MS Thesis, Massachusetts Institute of Technology Media Laboratory (1995)

    Google Scholar 

  4. Modler, P., Myatt, T.: A Video System for Recognizing Gestures by Artificial Neural Networks for Expressive Musical Control. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 541–548. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Charayaphan, C., Marble, A.: Image processing system for interpreting motion in American Sign Language. Journal of Biomedical Engineering 14, 419–425 (1992)

    Article  Google Scholar 

  6. Kapuscinski, T., Wysocki, M.: Vision-based recognition of Polish Sign Language. In: Methods in Artificial Intelligence (2003)

    Google Scholar 

  7. Sarfraz, M., Yusuf, A.S., Zeeshan, M.: A System for Sign Language Recognition. Using Fuzzy Object Similarity Tracking. In: Proc. IEEE 9th International Conference on Inf. Visualization (2005)

    Google Scholar 

  8. Haberdar, H., Albayrak, S.: Real Time Isolated Turkish Sign Language Recognition from Video Using Hidden Markov Models with Global Features. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 677–687. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face Detection in Color Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(5), 696–706 (2002)

    Google Scholar 

  10. Özyürek, A., İlkbaşaran, D., Arık, E.: Turkish Sign Language. Koç University (2004), http://turkisaretdili.ku.edu.tr

  11. Turkish Sign Language Manual for Adults. Turkish Ministry of Education, Ankara (1995)

    Google Scholar 

  12. Haberdar, H.: Real Time Turkish Sign Language Recognition System From Video Using Hidden Markov Models. MS Thesis, Yıldız Technical University, Computer Science and Engineering Department (2005)

    Google Scholar 

  13. Alpaydın, E.: Introduction to Machine Learning, pp. 305–326. The Massachusetts Institute of Technology Press (2004)

    Google Scholar 

  14. Young, S.: The Hidden Markov Model Toolkit Book Version 3.2.1. Cambridge University Engineering Department. Speech Group and Entropic Research Lab. Inc., Washington DC (2002)

    Google Scholar 

  15. Bao, Y., Ishii, N., Du, X.: Combining Multiple k-Nearest Neighbor Classifiers Using Different Distance Functions. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 634–641. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haberdar, H., Albayrak, S. (2006). A Two-Stage Visual Turkish Sign Language Recognition System Based on Global and Local Features. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_5

Download citation

  • DOI: https://doi.org/10.1007/11875604_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics