Abstract
This paper presents a concept of bidirectional probabilistic character language model and its application to handwriting recognition. Character language model describes probability distribution of adjacent character combinations in words. Bidirectional model applies word analysis from left to right and in reversed order, i.e. it uses conditional probabilities of character succession and character precedence. Character model is used for HMM creation, which is applied as a soft word classifier. Two HMMs are created for left-to-right and right-to-left analysis. Final word classification is obtained as a combination of unidirectional recognitions. Experiments carried out with medical texts recognition revealed the superiority of combined classifier over its components.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brakensiek, A., Rottland, J., Kosmala, A., Rigoll, G.: Off-Line Handwriting Recognition Using Various Hybrid Modeling Techniques and Character N-Grams. In: Proc. of the Seventh Int. Workshop on Frontiers in Handwriting Recognition, pp. 343–352 (2000)
Kuncheva, L.: Combining Classifiers: Soft Computing Solutions. In: Pal, S., Pal, A. (eds.) Pattern Recognition: from Classical to Modern Approaches, pp. 427–451. World Scientific, Singapore (2001)
Marti, U.V., Bunke, H.: Using a Statistical Language Model to Improve the Performance of an HMM-Based Cursive Handwritting Recognition System. Int. Journ. of Pattern Recognition and Artificial Intelligence 15, 65–90 (2001)
Liu, C., Nakashima, K., Sako, H.: Handwritten Digit Recognition: Benchmarking of State-of-the-Art Techniques. Pattern Recognition 36, 2271–2285 (2003)
l-Nasan, A., Nagy, G., Veeramachaneni, S.: Handwriting recognition using position sensitive n-gram matching. In: Proc. 7th Int. Conf. on Document Analysis and Recognition, pp. 577–582 (2003)
Vinciarelli, A., Bengio, S., Bunke, H.: Offline Recognition of Unconstrained Handwritten Text Using HMMs and Statistical Language Models. IEEE Trans. on PAMI 26, 709–720 (2004)
Sas, J., Luzyna, M.: Combining Character Classifier Using Member Classifiers Assessment. In: Proc. of 5th Int. Conf. on Intelligent Systems Design and Applications, ISDA 2005, pp. 400–405. IEEE Press, Los Alamitos (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sas, J. (2006). Application of Bidirectional Probabilistic Character Language Model in Handwritten Words Recognition. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_82
Download citation
DOI: https://doi.org/10.1007/11875581_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45485-4
Online ISBN: 978-3-540-45487-8
eBook Packages: Computer ScienceComputer Science (R0)