Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybridizing Cultural Algorithms and Local Search

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

Abstract

In this paper, we propose a new population-based framework for combining local search with global explorations to solve single-objective unconstrained numerical optimization problems. The idea is to use knowledge about local optima found during the search to a) locate promising regions in the search space and b) identify suitable step sizes to move from one optimum to others in each region. The search knowledge was maintained using a Cultural Algorithm-based structure, which is updated by behaviors of individuals and is used to actively guide the search. Some experiments have been carried out to evaluate the performance of the algorithm on well-known continuous problems. The test results show that the algorithm can get comparable or superior results to that of some current well-known unconstrained numerical optimization algorithms in certain classes of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brent, R.P.: Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  • Gegenfurtner, K.R.: PRAXIS: Brent’s algorithm for function minimization. Behavior Research Methods, Instrument, & Computers 24(4), 560–564 (1992)

    Article  Google Scholar 

  • Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Systems 5(3), 299–326 (1991)

    MATH  MathSciNet  Google Scholar 

  • Lourenco, H.R., Martin, O., Stuetzle, T.: A beginner’s introduction to Iterated Local Search. In: Proceedings of the 4th Metaheuristics International Conference, vol. 1, pp. 1–6 (2001)

    Google Scholar 

  • Reynolds, R.G.: An introduction to cultural algorithms. In: Sebald, A.V., Fogel, L.J. (eds.) Proceedings of the 3rd Annual Conf. Evolutionary Programming, pp. 131–139 (1994)

    Google Scholar 

  • Reynolds, R.G., Chung, C.J.: Knowledge-based self-adaptation in evolutionary programming using cultural algorithm. In: Proc. of the International Conference on Evolutionary Computation, pp. 71–76 (1997)

    Google Scholar 

  • Reynolds, R.G., Zhu, S.: Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming. IEEE Transactions on Systems, Man, and Cybernetics, Part B 31(1), 1–18 (2001)

    Article  Google Scholar 

  • Lumsden, C.J., Wilson, E.O.: Genes, Mind and Culture. Harvard University Press, Cambridge (1981)

    Google Scholar 

  • Stebbins, G.L.: Darwin to DNA: molecules to humanity. W. H. Freeman & Co, New York (1982)

    Google Scholar 

  • Ayala, F.: Biology precedes, culture transcends: an evolutionist’s view of human nature. Zygon 33, 507–523 (1998)

    Article  Google Scholar 

  • Ostrowski, D., Tassier, T., Everson, M., Reynolds, R.: Using Cultural Algorithms to Evolve Strategies in Agent-Based Models. In: Proceedings of World Congress on Computational Intelligence, pp. 741–746 (2002)

    Google Scholar 

  • Becerra, R.L., Coello, C., Carlos, A.: Optimization with constraints using a cultured differential evolution approach. In: Proceedings of the GECCO Conference, pp. 27–34 (2005)

    Google Scholar 

  • Reynolds, R.G., Peng, B.: Knowledge Learning and Social Swarms in Cultural Algorithms. Journal of Mathematical Sociology, London, Routledge 29, 1–18 (2005)

    Google Scholar 

  • Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals and biomolecules. Science 285, 1368–1372 (1999)

    Article  Google Scholar 

  • Doye, J.P.K.: Physical perspectives on the global optimization of atomic clusters. In: Pinter, J.D. (ed.) Global Optimization: Scientific and Engineering Case Studies. Springer, Heidelberg (2006)

    Google Scholar 

  • Reynolds, R.G., Sverdlik, W.: Problem Solving Using Cultural Algorithms. In: Proceedings of IEEE World Congress on Computational Intelligence, vol. 2, pp. 645–650 (1994)

    Google Scholar 

  • Saleem, S., Reynolds, R.G.: Cultural Algorithms in Dynamic Environments. In: Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 1513–1520 (2000)

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  • Yao, X., Liu, X.: Fast evolutionary programming. In: Proceedings of the Fifth Annual Conference on Evolutionary Programming (EP 1996), pp. 451–460. MIT Press, Cambridge (1996)

    Google Scholar 

  • Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on realparameter optimization, TR, Nanyang Technology University, Singapore (2005), [Online] http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/Tech-Report-May-30-05.pdf

  • Hansen, N.: Compilation of Results on the 2005 CEC Benchmark Function Set (2006) [Online], http://www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/compareresults.pdf

  • Nguyen, T.T.: Compare CA-ILS: with 11 top algorithms (in CEC’05, special session on Real-Parameter Optimization) in functions F6, F7, and F8 in CEC 2005 test suites (2006), [Online], Available at http://www.cs.bham.ac.uk/~txn/Papers/CA-ILSvsCEC05_F6-F8.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, T.T., Yao, X. (2006). Hybridizing Cultural Algorithms and Local Search. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_71

Download citation

  • DOI: https://doi.org/10.1007/11875581_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics