Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fast Grid Search Method in Support Vector Regression Forecasting Time Series

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

  • 1727 Accesses

Abstract

Selection of kernel function parameters is one of the key problems in support vector regression(SVR) for forecasting because these free parameters have significant impact on the performances of forecasting accuracy. The commonly used grid search method is intractable and computational expensive. In this paper, a fast grid search method is proposed for tuning multiple parameters for SVR with RBF kernel for time series forecasting. Empirical results confirm the feasibility and validation of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Francis, E.H.T., Cao, L.: Application of support vector machines in financial time series forecasting. Omega: International Journal of Management Science 29, 309–317 (2001)

    Article  Google Scholar 

  • Kim, K.J.: Financial time series forecasting using support vector machines. Neurocomputing 55, 307–319 (2003)

    Article  Google Scholar 

  • Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University (2004), Available at http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf

  • Bao, Y.K., Lu, Y.S., Zhang, J.: Forecasting stock price by SVMs regression. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 295–303. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  • Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46, 131–159 (2002)

    Article  MATH  Google Scholar 

  • Boughorbel, S., Tarel, J.P., Boujemaa, N.: The LCCP for optimizing kernel parameters for SVM. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS (LNAI), vol. 3697, pp. 589–594. Springer, Heidelberg (2005)

    Google Scholar 

  • Bo, L.F., Wang, L., et al.: Multiple parameter selection for LS-SVM using smooth leave-one-out error. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 851–856. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bao, Y., Liu, Z. (2006). A Fast Grid Search Method in Support Vector Regression Forecasting Time Series. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_61

Download citation

  • DOI: https://doi.org/10.1007/11875581_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics