Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Neural Stochastic Optimization Framework for Oil Parameter Estimation

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

Abstract

The main objective of the present work is to propose and evaluate a neural stochastic optimization framework for reservoir parameter estimation, for which a history matching procedure is implemented by combining three independent sources of spatial and temporal information: production data, time-lapse seismic and sensor information. In order to efficiently perform large-scale parameter estimation, a coupled multilevel, stochastic and learning search methodology is proposed. At a given resolution level, the parameter space is globally explored and sampled by the simultaneous perturbation stochastic approximation (SPSA) algorithm. The estimation and sampling performed by SPSA is further enhanced by a neural learning engine that evaluates the objective function sensitiveness with respect to parameter estimates in the vicinity of the most promising optimal solutions.

The research presented in this paper is supported in part by the National Science Foundation ITR Grant EIA-0121523/EIA-0120934 and the Spanish Ministry of Education and Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Lumley, D.: Time-lapse seismic reservoir monitoring. Geophysics 66, 50–53 (2001)

    Article  Google Scholar 

  • Versteeg, R., Ankeny, M., Harbour, J., Heath, G., Kostelnik, K., Matson, E., Moor, K., Richardson, A.: A structured approach to the use of near-surface geophysics in long-term monitoring. Expert Systems with Applications 23, 700–703 (2004)

    Google Scholar 

  • van der Baan, M., Jutten, C.: Neural networks in geophysical applications. Geophysics 65, 1032–1047 (2000)

    Article  Google Scholar 

  • Nikravesh, M.: Soft computing-based computational intelligent for reservoir characterization. Expert Systems with Applications 26, 19–38 (2004)

    Article  Google Scholar 

  • Bangerth, W., Klie, H., Parashar, M., Mantosian, V., Wheeler, M.F.: An autonomic reservoir framework for the stochastic optimization of well placement. Cluster Computing 8, 255–269 (2005)

    Article  Google Scholar 

  • Parashar, M., Klie, H., Catalyurek, U., Kurc, T., Bangerth, W., Matossian, V., Saltz, J., Wheeler, M.F.: Application of grid-enabled technologies for solving optimization problems in data-driven reservoir studies. Future Generation of Computer Systems 21, 19–26 (2005)

    Article  Google Scholar 

  • Spall, J.C.: Introduction to stochastic search and optimization: Estimation, simulation and control. John Wiley & Sons, Inc., New Jersey (2003)

    Book  MATH  Google Scholar 

  • Keane, A., Nair, P.: Computational Approaches for Aerospace Design: The Pursuit of Excellence. Wiley, England (2005)

    Book  Google Scholar 

  • Parashar, M., Wheeler, J.A., Pope, G., Wang, K., Wang, P.: A new generation EOS compositional reservoir simulator. Part II: Framework and multiprocessing. In: Fourteenth SPE Symposium on Reservoir Simulation, Dalas, Texas, pp. 31–38 (1997)

    Google Scholar 

  • Wang, P., Yotov, I., Wheeler, M.F., Arbogast, T., Dawson, C.N., Parashar, M., Sepehrnoori, K.: A new generation EOS compositional reservoir simulator. Part I: Formulation and Discretization. In: Fourteenth SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dalas, Texas pp. 55–64 (1997)

    Google Scholar 

  • Bourbie, T., Coussy, O., Zinszner, B.: Acoustics of Porous Media. Institut fran¸cais du p´etrole publications, Editions TECHNIP (1987)

    Google Scholar 

  • Nishi, K.: A three dimensional robust seismic ray tracer for volcanic regions. Earth Planets Space 53, 101–109 (2001)

    Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company, New York (1994)

    MATH  Google Scholar 

  • Christie, M., Blunt, M.: Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques. SPE Reservoir Engineering 12, 308–317 (2001)

    Google Scholar 

  • Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banchs, R.E., Klie, H., Rodriguez, A., Thomas, S.G., Wheeler, M.F. (2006). A Neural Stochastic Optimization Framework for Oil Parameter Estimation. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_18

Download citation

  • DOI: https://doi.org/10.1007/11875581_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics